Comparação de Métodos de Deep Learning Pré-Treinados da Biblioteca OpenCV para Detecção de Pessoas em Ambientes Internos

Jesuino Vieira Filho, Pablo Andretta Jaskowiak

Resumo


Sistemas de monitoramento baseados em câmeras são cada vez mais onipresentes em ambientes internos e externos. A existência de um sistema de monitoramento não garante, porém, que todas as informações coletadas sejam utilizadas e/ou analisadas. Quando uma interpretação das imagens é necessária, usualmente recorre-se à visão computacional. Neste contexto particular, métodos de Deep Learning têm recebido crescente atenção. De fato, apesar de seu desenvolvimento recente, alguns destes métodos estão disponı́veis em bibliotecas e pacotes de software de forma pré-treinada, permitindo sua aplicação com relativa facilidade. Neste trabalho diferentes métodos de Deep Learning disponı́veis na biblioteca OpenCV foram comparados para a detecção e contagem de pessoas em ambientes internos. Os métodos foram comparados quanto à sua precisão, revocação e tempo de detecção. Para a aplicação considerada, os resultados obtidos sugerem que o método YOLO (v3) apresenta um bom compromisso entre medida F1 e tempo de reconhecimento. A detecção precisa e rápida de pessoas pode vir a auxiliar futuramente, por exemplo, na estimação da carga térmica observada e consequente ajuste de sistemas de condicionamento de ar.

 

 


Palavras-chave


Deep Learning; Detecção de Pessoas; OpenCV

Texto completo:

PDF


A REIC mudou de endereço! Para acessar as edições publicadas e/ou submeter seu artigo, acesse https://sol.sbc.org.br/journals/index.php/reic.