Iracema: a Python library for audio content analysis


  • Tairone Nunes Magalhaes Center for Research on Musical Gesture & Expression
  • Felippe Brandão Barros Center for Research on Musical Gesture & Expression
  • Mauricio Alves Loureiro Center for Research on Musical Gesture & Expression



Music Expressiveness, Music Information Retrieval, Software Systems and Languages for Sound and Music


Iracema is a Python library that aims to provide models for the extraction of meaningful information
from recordings of monophonic pieces of music, for purposes of research in music performance. With this objective in mind, we propose an architecture that will provide to users an abstraction level that simplifies the manipulation of different kinds of time series, as well as the extraction of segments from them. In this paper we: (1) introduce some key concepts at the core of the proposed  architecture; (2) describe the current functionalities of the package; (3) give some examples of the application programming interface; and (4) give some brief examples of audio analysis using the system.


Download data is not yet available.


CAMPOLINA, T. A. M.; MOTA, D. A.; LOUREIRO, M. A. Expan: a tool for musical expressiveness analysis. In: Proceedings of the 2nd International Conference of Students of Systematic Musicology. Ghent, Belgium: IPEM, 2009. p. 24-27.

WALT, S. van der; COLBERT, S. C.; VAROQUAUX, G. The NumPy array: a structure for efficient numerical computation. Computing in Science & Engineering, IEEE, v. 13, n. 2, p. 22-30, 2011.

JONES, E. et al. SciPy: Open source scientific tools for Python. 2001. Disponı́vel em: h

REPP, B. H. Individual differences in the expressive shaping of a musical phrase: the openin of Chopin’s Etude in E major. In: Music, Mind and Science. Seoul, Korea: Seoul National University Press, 1999. p. 239-270.

CLARKE, E. Empirical methods in the study of performance. In: Empirical musicology: Aims, methods, prospects. [S.l.: s.n.], 2004. p. 77-102.

PALMER, C. Music performance. Annual review of psychology, v. 48, p. 115-38, 1997.

GABRIELSSON, A. Music Performance Research at the Millennium. Psychology of Music, v. 31, n. 3, p. 221-272, jul 2003.

GOEBL, W.; DIXON, S.; POLI, G. D. Sense in expressive music performance: Data acquisition, computational studies, and models. Sound to Sense - Sense to Sound: A State of the Art in Sound and Music Computing, p. 195-242, 2005.

LERCH, A. et al. Music Performance Analysis: A Survey. 2019.

REPP, B. H. Diversity and commonality in music performance: an analysis of timing microstructure in Schumann’s ”Träumerei”. The Journal of the Acoustical Society of America, v. 92, p. 227-260, 1992.

BERNAYS, M.; TRAUBE, C. Investigating pianists’ individuality in the performance of five timbral nuances through patterns of articulation, touch, dynamics, and pedaling. Frontiers in Psychology, v. 5, n. MAR, p. 1-19, 2014.

KOREN, R.; GINGRAS, B. Perceiving individuality in harpsichord performance. Frontiers in Psychology, v. 5, n. FEB, p. 1-13, 2014.

CUADRA, P. D. L. Efficient pitch detection techniques for interactive music. In: ICMC. [S.l.: s.n.], 2001. p. 403-406.

KIM, J. W. et al. CREPE: A Convolutional Representation for Pitch Estimation. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2018. [S.l.: s.n.], 2018.

PEETERS, G. et al. The timbre toolbox: extracting audio descriptors from musical signals. The Journal of the Acoustical Society of America, v. 130, n. 5, p. 2902-2916, 2011.

BELLO, J. P. et al. A tutorial on onset detection in music signals. IEEE Transactions on Speech and Audio Processing, v. 13, n. 5, p. 1035-1046, 2005.

PARK, T. H. Introduction to digital signal processing: Computer musically speaking. [S.l.]: World Scientific Publishing Co. Pte. Ltd., 2010. 429 p.

DIXON, S. Onset Detection Revisited. In: 9th International Conference on Digital Audio Effects. Montreal, Canada: [s.n.], 2006. p. 133-137.

LERCH, A. An introduction to audio content analysis: Applications in signal processing and music informatics. [S.l.: s.n.], 2012. 1-248 p.

TOH, A. M.; TOGNERI, R.; NORDHOLM, S. Spectral entropy as speech features for speech recognition. Computer Engineering, n. 1, p. 22-25, 2005.

De Poli, G.; MION, L. From audio to content. In: Unpublished book. [S.l.: s.n.], 2006. cap. 5.

SAMPSON, A. audioread. 2020. Disponı́vel em:

GEIER, M. sounddevice. Spatial Audio, 2020. Disponı́vel em:

MCFEE, B. resampy. 2019. Disponı́vel em:

MAGALHÃES, T. N. et al. Análise do vibrato e bending na guitarra elétrica. In: Anais do XV Simpósio Brasileiro de Computação Musical. [s.n.], 2015. p. 36-47. Disponı́vel em: h




How to Cite

Magalhaes, T. N., Barros, F. B., & Loureiro, M. A. (2020). Iracema: a Python library for audio content analysis. Revista De Informática Teórica E Aplicada, 27(4), 127–138.



Selected Papers - SBCM 2019