Stochastic Models for Planning VLE Moodle Environments based on Containers and Virtual Machines

Authors

  • Cleyton Ferreira Gonçalves Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil https://orcid.org/0000-0001-9053-234X
  • Ermeson Carneiro Andrade Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil https://orcid.org/0000-0002-9614-4492
  • Júlio Rodrigues de Mendonça Neto Coordenação de Informática, Instituto Federal de Alagoas, Maceió, Alagoas, Brasil https://orcid.org/0000-0002-1432-1169
  • Gustavo Rau de Almeida Callou Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil https://orcid.org/0000-0002-7997-374X

DOI:

https://doi.org/10.22456/2175-2745.119196

Keywords:

container, virtual machine, performance evaluation, energy consumption, cost evaluation, stochastic petri nets

Abstract

Moodle Virtual Learning Environments (VLEs) represent tools of a pedagogical dimension where the teacher uses various resources to stimulate student learning. Content presented in hypertext, audio or vídeo formats can be adopted as a means to facilitate the learning. These platforms tend to produce high processing rates on servers, large volumes of data on the network and, consequently, degrade performance, increase energy consumption and costs. However, to provide eficiente sharing of computing resources and at the same time minimize financial costs, these VLE platforms typically run on virtualized infrastructures such as Virtual Machines (VM) or containers, which have advantages and disadvantages. Stochastic models, such as stochastic Petri nets (SPNs), can be used in the modeling and evaluation of such environments. Therefore, this work aims to use analytical modeling through SPNs to assess the performance, energy consumption and cost of environments based on containers and VMs. Metrics such as throughput, response time, energy consumption and cost are collected and analyzed. The results revealed that, for example, a cluster with 10 replicas, occupied at their maximum capacity, can generate a 46.54% reduction in energy consumption if containers are used. Additionally, we validate the accuracy of the analytical models by comparing their results with the results obtained in a real infrastructure.

Downloads

Download data is not yet available.

Author Biography

Cleyton Ferreira Gonçalves, Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil

 

Departamento de ComputaçãoDepartamento de ComputaçãoDepartamento de ComputaçãoDepartamento de ComputaçãoDepartamento de Computação 

References

JONES, N. How to stop data centres from gobbling up the world’s electricity.Springer Nature Limited, v. 561, p. 163–166,September 2018.

AMDOCS.New Streamer 2021 Report. 2021.⟨https://www.amdocs.com/sites/default/files/New-Streamer-2021-Report-08Feb21.pdf⟩. [Online; acessado em: 23 de outubro de 2021].

ANATEL.Com maior uso da internet durante pandemia, n ́umero de reclamac ̧ ̃oes aumenta. 2020.⟨https://g1.globo.com/economia/tecnologia/noticia/2020/06/11/com-maior-uso-da-internet-durante-pandemia-numero-de-//reclamacoes-aumenta-especialistas-apontam-problemas-//mais-comuns.ghtml⟩. [Online; acessado em: 23 de Outubro de2021].

SALEKHOVA, L. L.; GRIGORIEVA, K. S.; ZINNUROV, T. A. Using lms moodle in teaching clil: A case study. In:201912th International Conference on Developments in eSystems Engineering (DeSE). [S.l.: s.n.], 2019. p. 393–395.

LIMA, C. J. d. et al. Performance and power consumption evaluation of the moodle environment.Revista Eletrˆonica deGest ̃ao Organizacionalt, v. 17, n. 5, p. 120–133, May 2019.

Bhimani, J. et al. Accelerating big data applications using lightweight virtualization framework on enterprise cloud. In:2017 IEEE High Performance Extreme Computing Conference (HPEC). [S.l.: s.n.], 2017. p. 1–7.

Salah, T. et al. Performance comparison between container-based and vm-based services. In:2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN). [S.l.: s.n.], 2017. p. 185–190.

BALBO, G. Introduction to generalized stochastic petri nets. In: . Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. p.83–131.

MURATA, T. Petri nets: Properties, analysis and applications.Proceedings of the IEEE, v. 77, n. 4, p. 541–580, April1989.

MARSAN, M. A. et al.Modelling with Generalized Stochastic Petri Nets. 1st. ed. USA: John Wiley & Sons, Inc., 1994.

ANEEL. Agencia Nacional de Energia Eletrica. 2020.⟨http://www.aneel.gov.br/ranking-das-tarifas⟩. [Online; acessado em: 11 de Dezembro de 2020].

DEHON, P. et al. Cvchatbot: Um chatbot para o aplicativo facebook messenger integrado ao ava moodle. In: . [S.l.: s.n.],2018. p. 1623–1632.

JR, J. C. C. Utilizac ̧ ̃ao do ava moodle e suas contribuic ̧ ̃oes no processo de ensino-aprendizagem: um relato de experienciada plataforma em uma disciplina de ciˆencias humanas voltada`a sa ́ude. In: . [S.l.: s.n.], 2019. v. 13, p. 6–26.

MOODLE.Moodle statistics. 2021.⟨https://moodle.net/stats/⟩. [Online; acessado em: 31 de Marc ̧o de 2021].

BOS, H.; TANENBAUM, A.Sistemas Operacionais Modernos. [S.l.]: PEARSON BRASIL, 2015. 325-341 p.

REDHAT.O que ́e virtualizac ̧ ̃ao?2020.⟨https://www.redhat.com/pt-br/topics/virtualization/what-is-virtualization⟩.[Online; acessado em: 23 de Dezembro de 2020].[17]VMWARE.Virtualizac ̧ ̃ao. 2020.⟨https://www.vmware.com/br/solutions/virtualization.html⟩. [Online; acessado em: 24 deDezembro de 2020].

Mukhedkar, P.; Vettathu, A.Mastering KVM Virtualization. 1st. ed. [S.l.]: Packt Publishing, 2016. 01–10 p.

Ivanov, K.KVM Virtualization Cookbook. 1st. ed. [S.l.]: Packt Publishing, 2017. 40 p.

COSTA, L. H. M. K.O que ́e virtualizac ̧ ̃ao?2021.⟨https://www.gta.ufrj.br/ensino/eel879/trabalhosv120172/kvm/⟩.[Online; acessado em: 09 de Novembro de 2021].

Nickoloff, S. K. J.; Fisher, B.Docker in Action. 1st. ed. [S.l.]: Manning books, 2019. 30–40 p.

Turnbull, J.The Docker Boook - Containerization is the new virtualization. 2016.⟨https://github.com/eduleboss/the-best-docker-books/blob/master/books/The%20Docker%20Book%20-%20James%20Turnbull%20-%20v17.03.0.pdf⟩.[Online; acessado em: 07-Maio-2019].

Cuadrado-Cordero, I.; Orgerie, A.; Menaud, J. Comparative experimental analysis of the quality-of-service andenergy-efficiency of vms and containers’ consolidation for cloud applications. In:2017 25th International Conference onSoftware, Telecommunications and Computer Networks (SoftCOM). [S.l.: s.n.], 2017. p. 1–6.

SILVA, B.; MACIEL, P.; ZIMMERMANN, A. Performability models for designing disaster tolerant infrastructure-as-a-service cloud computing systems. In:8th International Conference for Internet Technology and Secured Transactions(ICITST-2013). [S.l.: s.n.], 2013. p. 647–652.

PETRI, C.Kommunikation mit Automaten. [S.l.]: Rheinisch-Westf ̈alisches Institut f. instrumentelle Mathematik an d.Univ., 1962. (Schriften des Rheinisch-Westf ̈alischen Institutes f ̈ur Instrumentelle Mathematik an der Universit ̈at Bonn).

FIENI, G.; ROUVOY, R.; SEINTURIER, L. Smartwatts: Self-calibrating software-defined power meter for containers. In:2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). [S.l.: s.n.], 2020. p.479–488.

PHUNG, J.; LEE, Y. C.; ZOMAYA, A. Y. Lightweight power monitoring framework for virtualized computingenvironments.IEEE Transactions on Computers, v. 69, n. 1, p. 14–25, 2020.

ZHENG, R. et al. Energy saving strategy of power system cluster based on container virtualization. In:2020 Asia Energyand Electrical Engineering Symposium (AEEES). [S.l.: s.n.], 2020. p. 351–355.

Chen, F.; Zhou, X.; Shi, C. The container deployment strategy based on stable matching. In:2019 IEEE 4th InternationalConference on Cloud Computing and Big Data Analysis (ICCCBDA). [S.l.: s.n.], 2019. p. 215–221.

LIN, C.-C. et al. Energy-efficient core allocation and deployment for container-based virtualization. In:2018 IEEE 24thInternational Conference on Parallel and Distributed Systems (ICPADS). [S.l.: s.n.], 2018. p. 93–101.

Yadav, R. R.; Sousa, E. T. G.; Callou, G. R. A. Performance comparison between virtual machines and docker containers.IEEE Latin America Transactions, v. 16, n. 8, p. 2282–2288, Aug 2018.

Salah, T. et al. Performance comparison between container-based and vm-based services. In:2017 20th Conference onInnovations in Clouds, Internet and Networks (ICIN). [S.l.: s.n.], 2017. p. 185–190.

Bhimani, J. et al. Accelerating big data applications using lightweight virtualization framework on enterprise cloud. In:2017 IEEE High Performance Extreme Computing Conference (HPEC). [S.l.: s.n.], 2017. p. 1–7.

Barik, R. K. et al. Performance analysis of virtual machines and containers in cloud computing. In:2016 InternationalConference on Computing, Communication and Automation (ICCCA). [S.l.: s.n.], 2016. p. 1204–1210.

Brondolin, R.; Sardelli, T.; Santambrogio, M. D. Deep-mon: Dynamic and energy efficient power monitoring forcontainer-based infrastructures. In:2018 IEEE International Parallel and Distributed Processing Symposium Workshops(IPDPSW). [S.l.: s.n.], 2018. p. 676–684.

Tadesse, S. S.; Malandrino, F.; Chiasserini, C. Energy consumption measurements in docker. In:2017 IEEE 41st AnnualComputer Software and Applications Conference (COMPSAC). [S.l.: s.n.], 2017. v. 2, p. 272–273.

LITTLE, J. D. C. A Proof for the Queuing Formula: L = (lambda) W.Operations Research, v. 9, n. 3, p. 383–387, June1961.

IFSTAT.Ifstat Network Monitor. 2020.⟨https://linux.die.net/man/1/ifstat⟩. [Online; acessado em: 02 de Novembro de2020].

NMON.NMON for Linux. 2020.⟨http://nmon.sourceforge.net/pmwiki.php⟩. [Online; acessado em: 02 de Novembro de2020].

JMETER.Apache JMeter. 2020.⟨http://jmeter.apache.org⟩. [Online; acessado em: 02 de Novembro de 2020].

WATTSUP.Watts Up Power Meter. 2020.⟨https://arcb.csc.ncsu.edu/∼mueller/cluster/arc/wattsup/usb/watts-up-meters-manual.pdf⟩. [Online; acessado em: 02 de Novembro de 2020].

SILVA, B. et al. Mercury: An integrated environment for performance and dependability evaluation of general systems. In:. [S.l.: s.n.], 2015.

JAIN, R.The art of computer systems performance analysis - techniques for experimental design, measurement,simulation, and modeling.[S.l.]: Wiley, 1991. I-XXVII, 1-685 p. (Wiley professional computing).

KENETT, R. S.; ZACKS, S.; AMBERTI, D. Modern industrial statistics: with applications in r, minitab and jmp. In: .[S.l.: s.n.], 2014.

R.An Introduction to R. 2021.⟨https://cran.r-project.org/doc/manuals/r-release/R-intro.html⟩. [Online; acessado em: 14de Novembro de 2021].

GRIMA, P.; ALMARGO, L.; LLABRES, X.Industrial Statistics with Minitab. [S.l.: s.n.], 2012.

APACHE.Apache HTTP Server Documentation. 2021.⟨https://httpd.apache.org/docs-project/⟩. [Online; acessado em: 25de Dezembro de 2021].

MYSQL.MySQL Documentation. 2021.⟨https://dev.mysql.com/doc/⟩. [Online; acessado em: 25 de Dezembro de 2021].

PHP.PHP Documentation. 2021.⟨https://www.php.net/docs.php⟩. [Online; acessado em: 25 de Dezembro de 2021].

Downloads

Published

2022-05-16

How to Cite

Ferreira Gonçalves, C., Andrade, E. C., de Mendonça Neto, J. R., & de Almeida Callou, G. R. (2022). Stochastic Models for Planning VLE Moodle Environments based on Containers and Virtual Machines. Revista De Informática Teórica E Aplicada, 29(2), 63–83. https://doi.org/10.22456/2175-2745.119196

Issue

Section

Regular Papers