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Abstract: This paper presents deterministic versions to the hashing schemes of
Botelho, Kohayakawa and Ziviani (2005) and Botelho, Pagh and Ziviani (2007), also
proves a statement left as open problem in the former work, related to the correct-
ness proof and to the complexity analysis of their scheme. Our deterministic variants
have been implemented and executed over datasets with up to 25,000,000 keys and
have brought equivalent performance results between the deterministic and the origi-
nal randomized algorithms.

Resumo: Neste trabalho apresentamos versões determinísticas paraos esquemas
de hashingde Botelho, Kohayakawa e Ziviani (2005) e de Botelho, Pagh e Ziviani
(2007). Também respondemos a um problema deixado em aberto no primeiro dos
trabalhos, relacionado à prova da corretude e à análise de complexidade do esquema
por eles proposto. As versões determinísticas desenvolvidas foram implementadas
e testadas sobre conjuntos de dados com até 25.000.000 de chaves, e os resultados
verificados se mostraram equivalentes aos dos algoritmos aleatorizados originais.

1 Introduction

A minimal perfect hashing scheme, as defined in [1, 2, 3], is an algorithm that, given a
setSwith n keys from an universeU , constructs a hash functionh: U →{0, . . . ,n−1} which
maps without collisionS to {0, . . . ,n−1}. We are interested only in hashing schemes whose
outputs are hash functions withO(1) lookup time. For our purposes, every keyx is assumed
to be a chain of at mostL symbols taken from a finite alphabetΣ, for a fixed constantL. As
an example, keys can be URLs of length at mostL which we are trying to map to memory
addresses, and the alphabet would then contain decimal digits, Latin letters and some special
characters like/ and?.

Hashing is a widely studied topic in Computer Science. Mappingn objects bijectively
to hash table addresses{0, . . . ,n− 1} is a very often problem, and minimal perfect hash
functions, in particular, are useful in situations relatedto “efficient storage and fast retrieval
of items from static sets, such as words in natural languages, reserved words in programming
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languages or interactive systems, universal resource locations (URLs) in Web search engines,
or item sets in data mining techniques” [1].

Derandomization is an important subject of Computational Complexity and a way to
understand whether randomness in algorithms is necessary.Formally, a central problem about
complexity of randomized algorithms is “P= BPP?”. For example, the problem of polyno-
mial identity testing is inBPP, which means that it is solvable by a polynomial-timeMonte
Carlo algorithm [4], an algorithm whose answer can be wrong with bounded probability. De-
randomizing polynomial identity tests has deep consequences in Computational Complexity
[5]. On the other hand, the celebrated polynomial-time deterministic algorithm for primality
testing [6] is a successful derandomization of aMonte Carlopolynomial-time algorithm [7].
Differently, the hashing schemes we study are known asLas Vegasalgorithms [4], which
means that their answer is always right, but the time complexity is a random variable. Prob-
lems solvable byLas Vegasalgorithms with expected polynomial-time complexity formthe
classZPP⊆BPP.

We shall present derandomized versions to the hashing schemes of Botelho, Ko-
hayakawa and Ziviani (2005) and of Botelho, Pagh and Ziviani(2007), from now on referred
as BMZ and BDZ, respectively. These schemes areLas Vegasalgorithms that, given a set
with n keys, construct in expected timeO(n) a hash function which inO(1)-evaluation time
maps without collision the keys to the set{0, . . . ,n− 1}. The problem of constructing a
minimal perfectO(1)-evaluation time hash function given a set withn keys is, of course, in
P [8], therefore our work just shows that thesevery practicalalgorithms didn’t need to be
randomized to achieve a good average performance. Actuallywe derandomize the schemes
in a very simple manner, and the resulting algorithms are schemes ofO(n) average-case time
complexity. Additionally, we also give a proof for a question left open in [1] (Equation 2
below), closing the complexity analysis and the correctness proof of the BMZ scheme.

In what follows, unless stated otherwise, we use the termgraph to refer to a simple
graph, that is an unweighted, undirected graph containing no loops or multiple edges. The
termcritical subgraphof a graph refers to the maximal subgraph with minimum degreeδ > 2.
The termparentof a vertex in a graph search is used according to the traditional meaning, as
could be found in [9], in any graph search the termtree edgerefers to an edge in which one
endpoint is the parent of the other, and the termback edgerefers to an edge which is not a
tree edge. Also, we writea(n)≈ b if a(n)→ b asn→ ∞.

This paper is organized as follows. In Section 2 we shall givea brief review on related
works, in Section 3 we shall present deterministic versionsof the schemes BMZ and BDZ, in
Section 4 we shall prove a graph theoretical result related to the complexity analysis and to
the correctness proof of BMZ scheme, in Section 5 we shall give performance comparisons
between the randomized and derandomized schemes and finallyin Section 6 we shall close
with some considerations about hashing and our results.
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2 Related works

It is known that finding a perfect hash function for sets withn keys cannot be done
in o(n) time [3], although manyO(n)-time perfect hashing schemes are known from litera-
ture [2, 10, 11, 12]. For example, the randomized hashing scheme presented in [3], which
maps then keys to the edges of an acyclic graph on 2.09n vertices and then uses a depth-first
search to label the edges with the values 1, . . . ,n, constructs a minimal perfect hash function
in O(n) expected time. The constructed hash function requiresO(nlogn) bits to be stored,
and this amount of space is proportional to the size of the graph. This important hashing
scheme inspired the BMZ scheme [1], which, allowing the graph to be cyclic, reduces the
number of vertices to 1.15n.

In 1984 Fredman and Komlós [13] proved thatnlge+ lg lgu+O(logn) is a lower
bound for the space ofO(1)-evaluation time hash functions built by a minimal perfect scheme
on an universe withu objects. Remark that this means about lge∼= 1.443 bit per key. In ad-
dition, Melhorn [14] presented in 1984 a theoretical schemewith which proved the lower
bound to be tight. His scheme however was an exponential-time algorithm. Both schemes
of [3] and [1], although perfect, minimal, practical and efficient in time, construct hash func-
tions represented by an undesirable amount of space, if we take into account that it is possi-
ble to have minimal perfect hashing schemes whose output hash functions require onlyO(n)
bits [14]. Even the space of the latter being smaller than that of the former, it does not escape
from the asymptoticO(nlogn).

The practical, minimal, perfect andO(n)-expected time BDZ scheme [2], presented in
2007, not only achieves theO(n) space to the representation of the constructed hash function
but also gets this amount to be 2.62n, just a little greater than 1.443n. More recently, better
practical hashing schemes were proposed [15, 16]. The one byBelazzougui, Botelho and Di-
etzfelbinger [15], known as CHD, generates inO(n) time a minimal perfectO(1)-evaluation
time hash function which requires just about 2.06 bits per key. The authors’ experiment show
that CHD is more efficient than other schemes concerning to running and evaluation time
too. Nevertheless, one can still set CHD parameters to obtain better results according to each
application. For example, if one does not need the hash function to be minimal, CHD can
map without collision then keys to addresses 1, . . . ,m, wherem= 1.23n, in a way that the
generated hash function requires about 1.4 bits per key. Evenmore, if one setsm= 2n, one
gets 0.67 bits per key. CHD also shows up very efficient fork-perfect hashing, where at most
k keys can be mapped to the same address. BMZ, BDZ, CHD and otherhashing schemes
were implemented in CMPH (C Minimal Perfect Hashing) library, developed and maintained
atSourceForge.net by the authors themselves.

Below, for sake of completeness, we give a short review of theBMZ and BDZ schemes,
though we strongly recommend [1, 2] for more details.
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2.1 BMZ

This is a hashing scheme proposed in [1] which constructs inO(n) expected time a
minimal perfect hash function given a setS with n keys. It mapsS to the setE(G) of the
n edges of a graphG on 1.15n vertices and then tries to find a way to assign labels to the
vertices so that the edges labels, defined to be the sum of endpoints labels, will be the whole
set{0, . . . ,n−1}. Two properties aboutG are required:

Property P1: The critical subgraph ofG, denoted byGcrit, must be connected.

Property P2: |E(Gcrit)|6
1
2|E(G)|.

Both PropertiesP1 andP2 occur in a random graph on 1.15n vertices andn edges with
probabilityp≈ 1 [1].

BMZ is a three-step hashing scheme: first is themapping step, when the keys are
mapped to the edges of a graph; second is theordering step, whenGcrit is found; and third is
thesearching step, when the edges are labeled, starting at those inGcrit.

In themapping stepthe setSis mapped to the edge set of a random graphG by picking
up two random functionsh1,h2 : S→V(G), so a keyx∈ S is mapped to the edge

e(x) =

{

{h1(x),h2(x)}, if h2(x) 6= h1(x),

{h1(x),2h1(x)+1}, otherwise,
(1)

and, if we havee(x) = e(y) for distinctx andy, we simply pick up another pair of functions
(h1,h2). The expected number of iterations of this procedure is about 2.13 [1].

In the ordering stepBMZ finds Gcrit by successively removing fromG the edges
incident to vertices of degree at most 1. See Example 1 below.

In the searching stepBMZ first labels the edges inGcrit. After that, the other ones
can receive the non-used labels in thecritical part. Labeling the critical edges can be done
by a simple greedy strategy performed in a breadth-first search onGcrit. We assign to the
initial vertexu0 of the search the labelg(u0) = 0 and initialize a counter variablei with 1, so
each searched vertexv 6= u0 is labeled withg(v) = i, whereuponi is incremented each time
is used. Whenever we assign the labeli to a vertex and this assignmentfails, we incrementi
and try again on the same vertex, never changing earlier assigned labels. As each edge label
h({u,v}) is the sumg(u)+g(v), an assignment canfail if, when trying to assigni to v, we find
a neighborw of v such that the labelh({w,v}) = g(w)+ i collides with the label of another
edge previously labeled.

Let us denote byNt the total number of verticesreassignmentsin the search onGcrit,
and byNbedgesthe number of back edges ofGcrit according to the search. In [1] the authors
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showed that under the hypotheses of PropertiesP1 andP2 and of

Nt 6 Nbedges, (2)

the labeling procedure never causes an edgee to haveh(e) > n−1, assuring minimality to
the hash function we are constructing (see Theorem 1 below).Notwithstanding, if some edge
e receivesh(e) > n−1, because of the infinitesimal probability ofG not satisfying some of
PropertiesP1 andP2, the whole scheme is restarted. At the end of the process, thebijection
h◦e: S→ {0, . . . ,n−1}, which maps eachx in S to an address between 0 andn−1, is the
desired minimal perfect hash function.

Example 1 ([1]): As shown in the Figure 1, by successively removing edges incident to
vertices of degree at most 1 we get

Gcrit =
(

{0,3,4,7,8},
{

{0,8},{8,3},{3,4},{4,8},{8,7},{7,0}
})
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Figure 1. Finding the critical subgraph of a graph

For an example of BMZ searching step, let’s start at vertex 8 abreadth-first search
on Gcrit indicated in Figure 1(c), assigning 0 tog(8). Next vertex searched is 0, and we
makeg(0) = i = 1. Incrementingi, we search for 3, which is assigned to labelg(3) = i = 2.
Now i = 3, and 4 is searched and assigned smoothly tog(4) = i = 3. But, when searching
for 7, if we makeg(7) = i = 4, a collision occurs between labelsh({7,0}) = 4+ 1 and
h({3,4}) = 2+3. Hence, we try areassignmentincrementingi. Anyhow, if we makeg(7) =
i = 5, a collision takes place betweenh({8,7}) andh({3,4}). Another reassignment comes
to pass, but this time, makingg(7) = i = 6, we finally get the labels to all critical edges, as
Figure 2(a) illustrates. Now we can simply perform a depth-first search on the non-critical
edges to assign them the labels in 0, . . . ,n−1 not used forGcrit, in our example 0 and 4, as
shown in Figure 2(b).
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Figure 2. Searching for minimal perfect hash functionh

The core result obtained in [1] runs as follows.

Theorem 1(Botelho, Kohayakawa and Ziviani [1]): If Nt 6 Nbedges, and ifGcrit satisfies both
PropertiesP1 andP2, then the maximum labelmaxAE assigned to a critical edge by BMZ
searching step is at mostn−1.

Sketch of proof.As variablei is incremented|V(Gcrit)|+Nt times, the biggest value assigned
to a critical vertex is at most|V(Gcrit)|+Nt−1, the second biggest value is at most|V(Gcrit)|+
Nt −2. Thus, maxAE 6 2|V(Gcrit)|−3+2Nt. If Nt 6 Nbedges, then maxAE 6 2|V(Gcrit)|−
3+2Nbedges. Gcrit is connected, so the number of tree edges in the search is|V(Gcrit)|+1,
and, consequently,Nbedges= |E(Gcrit)|− |V(Gcrit)|+1. Therefore, maxAE 6 2|E(Gcrit)|−1,
and the theorem follows from|E(Gcrit)|6

1
2|E(G)| and|E(G)|= n.

2.2 BDZ

This is a hashing scheme proposed in [2] which constructs inO(n) expected time a
minimal perfect hash function that requires only about 2.62 bits per key, very close to the
tight lower bound result of about 1.443 bit per key. It mapsS to the edge set of a 3-partite
3-hypergraphG with t = 1.23n vertices andn edges. Though BDZ is originally defined to
be performed using ar-partiter-hypergraph for anyr > 2, the best results are obtained when
r = 3. BDZ is not a generalization nor an expansion of BMZ. While in BMZ the label of an
edge is the sum of the labels of the vertices belonging to thatedge, in BDZ the label of an
edge isthe label of the vertexassignedto that edge, as we shall define. Remark that BMZ
does not require the graph to be bipartite.

Besides of 3-partiteness, BDZ requires the 3-hypergraphG another property:

Property P3: The edges setE(G) must be orderable in a listL = [e1, . . . ,en] such that every
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edgeej has at least one vertex not belonging to anyej ′ for all j ′ > j.

Every acyclic hypergraph satisfies this property, of course. Furthermore, according
to [17, 3], acyclicness occurs in a random 3-partite 3-hypergraph on 1.23n vertices andn
edges with probabilityp ≈ 1. Thus, in itsmapping step, BDZ use three random functions
h j : S→Vj , for j = 0,1,2, to map each keyx to the edge{h0(x),h1(x),h2(x)}, where

Vj =
{⌊ jt

3

⌋

, . . . ,
⌊ ( j +1)t

3
−1
⌋}

(3)

are the parts ofV(G). The hypergraphG cannot contain multiple edges, so we redraw the
functionsh j when{h0(x),h1(x),h2(x)}= {h0(y),h1(y),h2(y)} for distinctx andy. As exem-
plified in Figure 3, ordering the edges in listL can be done by simply removing successively
from G the edges incident to vertices of degree at most 1, until we have no edges to remove.
If edges remain such that none of them can be removed, the mapping step draw another set
of random functions. In [2] was shown that the probability ofredrawingh j , due to multiple
edges or due to fail while ordering edges inL, is p≈ 0.

2
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Figure 3. Ordering the edges of a hypergraph in a list, according to PropertyP3

BDZ assigning stepfinds a functionρ which maps injectivelyE(G) to V(G), in order
to assign the vertexρ(e) to the edgee. We getρ by traversing the edges in the reverse order
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en, . . . ,e1 with respect toL. Every vertex is initially labeled with 3. Then, for each edge
e= {u0,u1,u2} traversed, whereu0 ∈ V0, u1 ∈ V1 andu2 ∈ V2, we take exactly one vertex
ui ∈ e not yetvisited, labeling it with

g(ui) =

(

i − ∑
v∈ej

v visited

g(v)

)

mod3, (4)

and thenvisit all vertices ine. At the end of assigning step the sum modulo 3 of the labels for
all vertices in an edgee= {u0,u1,u2} will be the indexi of the vertex which is assigned toe
by functionρ . As well, a labelg(u) of a vertexu is not equal to 3 if and only ifu is assigned
to an edge. In other words, if and only ifu is image of some edge by the functionρ .

Compounding mapping and assignment steps gives us a perfecthash function for set
S. Each key, mapped to an edge of the hypergraphG, is mapped byρ to an address in
V(G) = {0, . . . ,1.23n−1}. For the sake of making minimal this hash function, BDZranking
stepcomputes a rank table to achieve a function rank:V(G) → {0, . . . ,n−1}, injective for
ρ(E(G)), defined by rank(u) = |{v ∈ V(G) : v < u eg(v) 6= 3}|. The authors suggest the
work of [18] for implementing efficiently this rank table.

3 A simple strategy for derandomizing BMZ and BDZ

In mapping step BMZ scheme draws the functionsh1,h2 : S→ {0, . . . , t −1}, for t =
1.15n, by filling randomly two tablesT1 andT2. Each table hasL× |Σ| numbers in the set
{0, . . . , t − 1}. Recall that a keyx ∈ S is a sequencex = x1x2 · · ·x|x| of |x| 6 L symbols in
Σ, thus the lines of the tables correspond to the positions in the key, as the columns to the
symbols. Thus, forj = 1,2, the value ofh j(x) is defined by

h j(x) =

( |x|

∑
i=1

Tj [i,xi ]

)

modt. (5)

We can show [1, Section 3.1] that the probability of a pair(h1,h2) giving a simple graph is
about e−1/1.152 ∼= 0.469. This means that approximately 0.469 of all possible pairs(T1,T2)
aregoodpairs: they generateh1 andh2 whereby the graph obtained doesn’t have loops or
multiple edges. Our deterministic version of BMZ simply establishes an ordering to search
for all possible pairs(T1,T2) in a way that the expected number of probes until finding agood
one is at most 3.

From now on, we look at each pair(T1,T2) as a numberT with 2L|Σ| digits in baset:
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the j-th digit, 06 j < 2L|Σ|, is Ta[b,c], where thea, b andc are given by:

a=

{

1, if j < L|Σ|;
2, otherwise;

b=















⌊ j
|Σ|

⌋

+1, if j < L|Σ|;
⌊ j
|Σ|

⌋

+1−L, otherwise;

c= ( j mod|Σ|)+1.

(6)

Moreover, we need a constant with 2L|Σ| digits such that added successively toT modulo
N+1 gives all possibleN+1 numbers with 2L|Σ| digits. We show in Proposition 1 that if
t−1 is divisible by 3, then we can fix the constant asN/3. This implies that we must consider

1. t = min{m∈ N : m> 1.15n andm−1 is divisible by 3} instead of 1.15n;

2. that, if a pair of tables is notgood, we take next simply adding(t −1)/3 modulot to
each position in table, propagating carry from each position to another, in view ofN/3
in baset has all digits equal to(t −1)/3.

In Proposition 1, we assume without loss of generality that the first number in sequenceσ
is 0, but actually, in practice, our first pair of tables is obtained by filling the tables with
0,1,2, . . . , t −1,0,1,2, . . .

Proposition 1: If t −1 is divisible by3, and ifσ0 = 0, and if

σ j+1 =
(

σ j +
N
3

)

mod(N+1) (7)

for all j > 0, then{σ0, . . . ,σN}= {0, . . . ,N}.

Proof. Let us suppose thatt −1 is divisible by 3, thus

N = (t −1)t0+(t−1)t1+(t −1)t2+ · · ·+(t−1)t2L|Σ|−1 (8)

also is divisible by 3, furthermoreN/3 is an integer whose prime factors are factors ofN.
Moreover, 3 is the only prime factor ofN that might not be factor ofN/3. Because none of
the primes which divideN dividesN+1, we have thatN/3 andN+1 are coprimes.

For all j ∈ {0, . . . ,N}, σ j = ( jN/3)mod(N+ 1). But N+ 1 andN/3 are coprimes,
andN+1 never dividesjN/3 for any 0< j 6 N. By consequence,σ j 6= 0 for all 0< j 6 N.
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Now, let us assume that there exists some repetition in{σ0, . . . ,σN}, beingσ j the first
repeated element, equal to someσ j ′ for somej ′ < j. We must havej ′ > 0. However,

(

( j − j ′)
N
3

)

mod(N+1) = 0, (9)

andσ j− j ′ = 0, a contradiction, sincej − j ′ > 0.

Remark that Proposition 1 means that taking successively next pair of tables(T1,T2)
when one fails guarantees us that no pair will be repeated until all pairs have been taken.
Evenmore, as 0.469 of the pairs aregood, we might affirm that in the average case our deter-
ministic approach finds agoodpair in about 2.13 iterations. Trying to make one pair different
the most from the next, till we have similar pairs only after 3> 2.13 steps, can be viewed as a
way of jumpingenough in the search space, since we can fairly believe that small changes in
the tablesT1 andT2 would not make great differences in the structure of the generated graph.

We use the very same strategy for derandomizing BDZ. According to [2], BDZ uses
the works of [19, 20] to drawh0, h1 andh2 by filling with random bits a matrixAγ×L, where
γ is a constant. The matrixA gives a functionh′ which maps each keyx to a chainh′(x) of γ
bits, from which we obtainh0, h1 andh2 as follows: ifx is the binary representation of key
x, h′(x) is given byh′(x) = AxT, and eachh j , for j = 0,1,2, is given by

h j(x) =
(

h′(x)[ jβ ..( j +1)β −1]
)

mod
( t

3

)

+ j
( t

3

)

, (10)

whereβ is the chosen constant that defines the number of bits used from h′ for computing
eachh j . By the way, we useh′(x)[a..b] to denote the natural number whose binary represen-
tation is the subchain ofh′(x) starting at positiona and ending at positionb.

As demonstrated in Proposition 2, ordering all possibleN+1 matricesA in a deter-
ministic sequence is achieved ifγ · L is even. We likewise consider a matrix as a number
with γ ·L bits, and again add moduloN+1 each number in sequence toN/3, whose binary
representation is(0101. . .01), as Equation 13 states. In other words, if a matrix is notgood,
we take next simply adding 1 modulo 2 to odd positions and 0 modulo 2 to even positions,
propagating carry from each position to another. Proposition 2 assumes the first number of
the sequence to be 0 by convenience, but the initial matrix isactually the one obtained by
filling its cells with 100110011001. . .

Proposition 2: If γ ·L is even, and ifσ0 = 0, and if

σ j+1 =
(

σ j +
N
3

)

mod(N+1) (11)

for all j > 0, then{σ0, . . . ,σN}= {0, . . . ,N}.

RITA • Volume 20• Número 2• 2013 65



Deterministic and efficient minimal perfect hashing schemes

Proof. If γ ·L is even, then

N =
γ·L−1

∑
j=0

2 j = 3
γ·L−1

∑
j=0

j even

2 j , (12)

and, thereupon,
γ·L−1

∑
j=0

j even

2 j =
N
3

. (13)

Equation 13 means thatN is divisible by 3, so the proof follows analogous to proof for
Proposition 1.

As a matrixA has probabilityp≈ 0 of being bad, since this is the probability of re-
drawingh j , almost all matrices in the deterministic ordering sequence generate a hypergraph
without multiple edges satisfying PropertyP3.

4 A proof for Equation 2

Recall BMZ searching step labels the critical edges of a graph G by performing a
breadth-first search on the critical subgraph ofG. Each time an unlabeled vertexv is discov-
ered, the search assigns tov the current value of the variablei, and if this assignment fails,i
is incremented by one and a new attempt is made. We call each such attempt areassignment.
As we have transcribed in Theorem 1, BMZ authors [1] show that, inasmuch asG satisfies
two properties aboutGcrit that almost all graph satisfies and Equation 2, which was leftopen
in [1], holds, we will never label an edge with a value greaterthann−1. Using Lemma 2, in
Theorem 3 we present a proof for Equation 2, closing the theoretical analysis of BMZ.

Lemma 2: In critical part of BMZ searching step, whenever we assign toa tree edge a label,
say, j, for sure j is greater than any label of any other already labeled tree edge.

Proof. Let us consider the moment in depth-first search the tree edgee is assigned to label
j, no matter this assignment fails or not. This is the moment when somev∈ e is assigned to
label i, wherei is the counter variable of BMZ searching step onGcrit. Then j = i +g(v0),
wherev0 is the parent ofv in the search. Ase is a back edge,e= {v0,v}.

Suppose, for the sake of contradiction, that there is a previously labeled tree edge
{v1,v2} such thath({v1,v2}) = g(v1)+g(v2)> j. We can assume

g(v0)< g(v1)< g(v2)< i. (14)
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It follows that v0 was dequeued beforev1, which was dequeued beforev2, which was de-
queued beforev, therefore, these vertices were queued respecting the sequencev0,v1,v2,v.
But whenv2 was queued,v1 had already been dequeued, becausev1 is the parent ofv2 in
search. Thus, whenv2 was queued,v0 had already been dequeued, queueingv even beforev2

being queued, a contradiction.

We proofNt 6 Nbedgesby showing an injection from the set of reassignments to the
set of back edges. Thereunto we take a setB, initially empty, and show a way how each
reassignment puts inB a back edge which was not there before. AsB is a subset of the set
of all back edges, we have our injection. Our proof is an overlap of two proofs by induction,
whereas outer induction is on reassignments and inner induction finds for each reassignment
the back edge to add toB.

Theorem 3(conjectured to be true in [1]): Nt 6 Nbedges.

Proof. Let r be a reassignment which occurs when assigning a valuei to a vertexv fails. As
v is obviously not the initial vertex of the search, letv0 be the parent ofv in search. The
reassignment occurs due to a vertexw neighbor ofv such thatg(w)+ i = j = g(u1)+g(u2)
for some edge{u1,u2} previously labeled, whereg(u1)< g(u2) without losing of generality.
We will demonstrate thatr puts a back edge inB which was not there before.

If r is the first reassignment in the whole search andw= v0, the edge{w,v} is a tree
edge and, from Lemma 2,{u1,u2} is the back edge we put inB, at this time empty. Otherwise,
if r is the first reassignment butw 6= v0, then{w,v} is the back edge we put inB, since{v0,v}
is a tree edge.

If r is not the first reassignment, let’s assume by induction thateach reassignmentr ′

beforer satisfies the property of having put inB a back edge which has not been there yet:

1. If w = v0, then edge{w,v} is a tree edge andf0 = {u1,u2} is a back edge. Iff0
is already inB when r happens, it’s because of another edgef1 labeled afterf0 but
before{w,v} such that we had unsuccessfully tried to assign the labelh( f0) = j to
f1. Analogously, if f1 is already inB when r happens, it’s due to another edgef2
labeled afterf1 but before{w,v} such that we had unsuccessfully tried to assign the
labelh( f1) > j to f2. Inductively, there is an edgefk, for somek > 0, which is not in
B whenr happens. Moreover, from Lemma 2,fk is a back edge, because its label is
h( fk)> j. Therefore,fk is the back edge we put inB.

2. Finally, if w 6= v0, then edgef0 = {w,v} is itself a back edge. Iff0 is already inB when
r happens, it’s because of a reassignment beforer when we had tried to assign tov the
labeli′ < i but it had failed due to an edgef1 6= f0 for whichh( f1) = g(w)+ i′ = j ′ < j.
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But if f1 is already inB whenr happens, it’s because of another edgef2 labeled afterf1
but beforef0 such that we had tried to assign tof2 the labelh( f1) = j ′. Analogously, if
f2 is already inB whenr happens, it’s due to another edgef3 labeled afterf2 but before
f0 such that we had tried to assign tof3 the labelh( f2) > j ′. Inductively, there is an
edgefk, for somek> 0, which is not inB whenr happens. Moreover, from Lemma 2,
fk is a back edge, because its label ish( fk)> j ′. Therefore,fk is the back edge we put
in B.

5 Empirical results

BMZ and BDZ implementations in CMPH do not draw the functionsin mapping step
as described above. Both use the practical Jenkins hash functions [21] instead of tablesT1,T2

and matrixA. Given a keyx which is a string and a random seed of 32 bits, Jenkins program
compute extremely fast three hash functionsJ1, J2 andJ3 that mapx to three numbers of 32
bits each. Jenkins hash functions circumvent the problem of, in practice, keys being quite
similar to each other, far from uniform distribution assumed in theory. For example, in case
where keys are URLs, they follow a very specific pattern. As Jenkins functions use all bits in
x to influence each bit inJi(x), they generally map even similar, whilst distinct, keys to very
different addresses. BMZ drawing ofh1 andh2 is actually drawing of a random seed for two
Jenkins hash functions. BDZ drawing ofh0, h1 andh2 is actually drawing of a random seed
for the three Jenkins hash functions. We extend our derandomization strategy for Jenkins
hash functions by ordering all numbers of 32 bits: initial seed is defined to be⌊n/3⌋, and
(232−1)/3 is the chosen coprime of 232 which we add (modulo 232) to the current seed in
each iteration.

We have tested our deterministic versions3 of BMZ and BDZ by simply making small
changes in the original source codes in CMPH library. Both original codes and our variants
have been executed in the same machine, an AMD AthlonTM 3500+ with 64 kiB of L1 cache,
512 kiB of L2 cache and 1 GiB of RAM. Running the same algorithmmany times for same in-
put can be interesting for randomized algorithms, but useless for deterministic ones. We have
decided therefore each test case to consist of 50 instances of key sets, and what we present
is the arithmetic average of all 50 obtained results. Both original and deterministic versions
have been input with the very same 50 key sets, so they could becompared fairly. Tests
have been executed over sets with up to 25,000,000 keys, artificial distinct URLs generated
by a script. Our results are shown in Table 1, where our deterministic versions of BMZ and
BDZ are called respectively D-BMZ and D-BDZ. We have compared not only time, but also

3available athttp://professor.ufabc.edu.br/~jair.donadelli/D-BMZ-BDZ.tar.bz2.
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number of iterations of mapping step. One can observe that there is no significant difference
between our deterministic versions and the original ones.

n= 6,250,000 12,500,000 25,000,000
scheme iterations time (s) iterations time (s) iterations time (s)
BMZ 1.8800 30.4516 2.4400 70.6006 2.4200 151.2864
D-BMZ 2.3600 32.9100 1.9000 65.1682 1.8800 144.6608
BDZ 1 23.2462 1 47.8154 1 101.2546
D-BDZ 1 23.0818 1 49.0736 1 102.4540

Table 1.An empirical comparison between our algorithms and the original ones

6 Final remarks

Despite of more recent and better results like those in [15, 16], we pick up only BMZ
and BDZ schemes to derandomize, though we believe that our simple strategy can as well
be applied to other randomized hashing schemes. BMZ [1] and BDZ [2] are practical and
time-efficient minimal perfect hashing algorithms. Moreover, BDZ hash functions require a
very small amount of space to be stored. It is about only 2.62 bits per key, a result which
is very close to the tight lower bound of about 1.44 bit per key [13, 14]. BMZ and BDZ
are randomized algorithms, but we present a simple strategyfor removing all randomness
of both schemes, and the empirical results show to be equivalent to the original ones. Our
goal in derandomizing these schemes was not, of course, to obtain better time results, as one
could think. Our contribution to these important hashing schemes is a deterministic behavior.
In particular, executions for the same input always producethe same output whereas, for
randomized schemes two distinct executions for same input can produce distinct outputs. We
believe this strategy can be useful for developing dynamic hashing schemes based on BMZ
and BDZ.

Static hashing schemes, like BMZ and BDZ, construct a hash function given a static
setS with n keys. A dynamic hashing scheme is a scheme where operations like insertion
and deletion of keys inS are available [3]. Dynamic hashing schemes are very useful to
model data structures, specially due toO(1) lookup time, in contrast toO(logn) time in data
structures based on trees [9]. A very known dynamic hashing scheme, presented in [22], is
based on the classic deterministic static hashing scheme FKS [8], though the dynamic version
is not deterministic. Actually, we cannot have deterministic dynamic hashing witho(logn)
lookup time [22], but determinism in the static scheme can help to build the dynamic one.

Notwithstanding running inO(n) expected time, both BMZ and BDZ do not have
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any guarantee of halting (albeit this event has probabilitytending to 0), since drawing of
functionsh j in mapping step is done with replacement. Our deterministicapproach also
gives the schemes a theoretical finite worst-case time, as Table 2 exposes, because we never
repeat a pair of tables(T1,T2) nor a matrixA, according to Propositions 1 (p. 64) and 2 (p. 65).
Notice that, in deterministic BMZ, the worst case is that when we try all(1−0.469)(N+1) =
O(n2L|Σ|) bad pairs of tables(T1,T2) until finding agoodone. For each pair of tables tried,
oneO(n)-time iteration of mapping step is executed, what leads us totheO(n2L|Σ|+1) worst-
case time to the whole scheme. In deterministic BDZ, on the other hand, the worst case is
that when we try allp(N+1) bad matricesA. But p ≈ 0, and thenp(N+1) = O(1), what
gives theO(n) worst-case time.

Scheme BMZ D-BMZ BDZ D-BDZ
Best-case time O(n) O(n) O(n) O(n)

Worst-case time +∞ O(n2L|Σ|+1) +∞ O(n)

Average-case time O(n) O(n) O(n) O(n)

Table 2.Theoretical time complexity comparisons between the schemes

Acknowledgment: We thank Fabiano C. Botelho, who pleasingly answered our mails and
presented us the BDZ algorithm.
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