Habilidade de centralização, transporte do canal e modificações de superfície do ProTaper F2 e F3 utilizados em rotação contínua e movimento reciprocante em canais curvos

Autores

  • Jader Vinicius Andreazza Unicsul – Unidade Avançada de Pós-Graduação de Caxias do Sul
  • Miguel Assis Martins dos Santos Unicsul – Unidade Avançada de Pós-Graduação de Caxias do Sul
  • Lucas Siqueira Pinheiro UFRGS
  • Júlia Eick Iglesias UFRGS
  • Fernanda Ulmann Lopez Unicsul – Unidade Avançada de Pós-Graduação de Caxias do Sul
  • Fabiana Soares Grecca UFRGS

DOI:

https://doi.org/10.22456/2177-0018.86208

Palavras-chave:

Endodontia, Preparo do canal radicular, Tomografia computadorizada de feixe cônico

Resumo

Objetivos: avaliar a centralização, transporte do canal e modificações de superfície dos intrumentos ProTaper Universal (PT) F2 e F3 utilizados em movimento de rotação continua (CR) e movimento reciprocante (RM) no preparo de canais curvos. Materiais e métodos: sessenta canais mesiovestibulares de molares superiores com curvaturas entre 25o e 35o foram divididos em três grupos: I – PT em CR até F3; II – PT em RM até F3; III – instrumentos F2 e F3 em RM. Foram obtidas imagens de Tomografia Computadorizada Cone Beam antes e após a instrumentação. As imagens foram sobrepostas para determinar a centralização e transporte do canal nos terços apical, médio e cervical. Os 6 mm apicais dos instrumentos F2 e F3 foram avaliados por Microscopia Eletrônica de Varredura antes e após 1, 3 e 6 usos para verificar distorções, desgaste de superfície e fratura. A análise estatística da centralização e transporte do canal foi feita pelos testes de Kruskall-Wallis e ANOVA, respectivamente. Os escores de deformação e desgaste de superfície foram comparados pelo teste de ANOVA. O teste exato de Fisher foi utilizado para avaliar a fratura dos instrumentos. Resultados: não houve diferença estatística entre os grupos testados quanto aos testes de centralização e transporte do canal, assim como para distorção, desgaste de superfície e fratura dos instrumentos (p>.05). Conclusões: os instrumentos F2 e F3 podem ser utilizados no prepare de canais curvos. Entretanto, quando usados para o preparo completo do canal radicular, F2 e F3 devem ser descartados após uso único.

Downloads

Não há dados estatísticos.

Referências

Schilder H. Cleaning and shaping the root canal. Dent Clin North Am. 1974;18(2):269-96.

Lim Y, Park J, Kim C. Comparison of the centering ability of Wave·One and. 2013;7658:21-5.

Esposito PT, Cunningham CJ. A comparison of canal preparation with nickel-titanium and stainless steel instruments. J Endod. 1995;21(4):173-6.

Parashos P, Messer HH. Rotary NiTi Instrument Fracture and its Consequences. J Endod. 2006;32(11):1031-43.

Walia H, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of nitinol root canal files. J Endod. 1988;14(7):346-51.

Sonntag D, Peters OA. Effect of Prion Decontamination Protocols on Nickel-Titanium Rotary Surfaces. J Endod. 2007;33(4):442-6.

Yared G. Canal preparation using only one Ni-Ti rotary instrument: Preliminary observations. Int Endod J. 2008;41(4):339-44.

Bürklein S, Benten S, Schäfer E. Shaping ability of different single-file systems in severely curved root canals of extracted teeth. Int Endod J. 2013;46(6):590-7.

De-Deus G, Moreira EJL, Lopes HP, Elias CN. Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement. Int Endod J. 2010;43(12):1063-8.

Varela-Patiño P, Ibañez-Párraga A, Rivas-Mundiña B, Cantatore G, Otero XL, Martin-Biedma B. Alternating versus Continuous Rotation: A Comparative Study of the Effect on Instrument Life. J Endod. 2010;36(1):157-9.

You SY, Bae KS, Baek SH, Kum KY, Shon WJ, Lee W. Lifespan of one nickel-titanium rotary file with reciprocating motion in curved root canals. J Endod. 2010;36(12):1991-4.

Schneider SW. A comparison of canal preparations in straight and curved root canals. Oral Surg Oral Med Oral Pathol. 1971;32(2):271-5.

Gambill JM, Alder M, del Rio CE. Comparison of nickel-titanium and stainless steel hand-file instrumentation using computed tomography. J Endod. 1996;22(7):369-75.

Troian CH, Só MVR, Figueiredo JAP, Oliveira EPM. Deformation and fracture of RaCe and K3 endodontic instruments according to the number of uses. Int Endod J. 2006;39(8):616-25.

Siqueira JF. Endodontic infections: Concepts, paradigms, and perspectives. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94(3):281-93.

Signoretti FGC, Endo MS, Gomes BPFA, Montagner F, Tosello FB, Jacinto RC. Persistent extraradicular infection in root-filled asymptomatic human tooth: Scanning electron microscopic analysis and microbial investigation after apical microsurgery. J Endod. 2011;37(12):1696-700.

Tziafas D, Alraeesi D, Hormoodi R Al, Ataya M, Fezai H, Aga N. Preparation prerequisites for effective irrigation of apical root canal: A critical review. J Clin Exp Dent. 2017;9(10):e1256-63.

Borlina SC, De Souza V, Holland R, Murata SS, Gomes-Filho JE, Dezan Junior E, et al. Influence of apical foramen widening and sealer on the healing of chronic periapical lesions induced in dogs’ teeth. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2010;109(6):932-40.

Elayouti A, Dima E, Judenhofer MS, Löst C, Pichler BJ. Increased apical enlargement contributes to excessive dentin removal in curved root canals: A stepwise microcomputed tomography study. J Endod. 2011;37(11):1580-4.

Estrela C, Holland R, Estrela C R A, Alencar A H G, Sousa-Neto M D PJD. Characterisation of Successful Root Canal Treatment. Braz Dent J. 2014;25(1):3-11.

Haapasalo M, Endal U, Zandi H, Coil JM. Eradication of endodontic infection by instrumentation and irrigation solutions. Endod Top. 2005;10(1):77-102.

Widmer C, Skutas J, Easson C, Lopez J V., Torneck C, Flax M, et al. Culture-independent Characterization of the Microbiome of Healthy Pulp. J Endod. 2018;44(7):1132-1139.e2.

Pasqualini D, Alovisi M, Cemenasco A, Mancini L, Paolino DS, Bianchi CC, et al. Micro–Computed Tomography Evaluation of ProTaper Next and BioRace Shaping Outcomes in Maxillary First Molar Curved Canals. J Endod. 2015;41(10):1706-10.

Gagliardi J, Versiani MA, De Sousa-Neto MD, Plazas-Garzon A, Basrani B. Evaluation of the shaping characteristics of ProTaper Gold, ProTaper NEXT, and ProTaper Universal in curved canals. J Endod. 2015;41(10):1718-24.

Elnaghy AM, Al-Dharrab AA, Abbas HM, Elsaka SE. Evaluation of root canal transportation, centering ratio, and remaining dentin thickness of TRUShape and ProTaper Next systems in curved root canals using micro-computed tomography. Quintessence Int. 2017;48(1):27-32.

Paqué F, Zehnder M, De-Deus G. Microtomography-based comparison of reciprocating single-file F2 ProTaper technique versus rotary full sequence. J Endod. 2011;37(10):1394-7.

Do Amaral ROJF, Leonardi DP, Gabardo MCL, Coelho BS, Oliveira KV De, Baratto Filho F. Influence of cervical and apical enlargement associated with the wave one system on the transportation and centralization of endodontic preparations. J Endod. 2016;42(4):626-31.

Jardine AP, Rosa RA, Santini MF, Zaccara IM, Só MVR, Kopper PMP. Shaping ability of rotatory or reciprocating instruments in curved canals: a micro-computed tomographic study. Braz Oral Res. 2016;30(1):1-8.

Arslan H, Khalilov R, Doğanay E, Karatas E. The effect of various kinematics on postoperative pain after instrumentation: a prospective, randomized clinical study. J Appl Oral Sci. 2016;24(5):503-8.

Navós B, Hoppe C, Mestieri L, Böttcher D, Só MR, Grecca F. Centering and transportation: in vitro evaluation of continuous and reciprocating systems in curved root canals. J Conserv Dent. 2016;19(5):478-81.

Giuliani V, Di Nasso L, Pace R, Pagavino G. Shaping ability of waveone primary reciprocating files and ProTaper system used in continuous and reciprocating motion. J Endod. 2014;40(9):1468-71.

De-deus G, Belladonna FG, Nogueira EJ, Lopes RT, Versiani MA, Paciornik S, et al. Micro-CT Evaluation of Non-instrumented Canal Areas with Different Enlargements Performed by NiTi Systems. Braz Dent J. 2015;26(6):624-9.

Kim HC, Hwang YJ, Jung DW, You SY, Kim HC, Lee W. Micro-computed tomography and scanning electron microscopy comparisons of two nickel-titanium rotary root canal instruments used with reciprocating motion. Scanning. 2013;35(2):112-8.

Arantes WB, Da Silva CM, Lage-Marques JL, Habitante S, Da Rosa LCL, De Medeiros JMF. SEM analysis of defects and wear on Ni-Ti rotary instruments. Scanning. 2014;36(4):411-8.

Murali Krishna Chakka N V., Ratnakar P, Das S, Bagchi A, Kumar S, Anumula L. Do NiTi instruments show defects before separation? Defects caused by torsional fatigue in hand and rotary nickel-titanium (NiTi) instruments which lead to failure during clinical use. J Contemp Dent Pract. 2012;13(6):867-72.

Kaval ME, Capar ID, Ertas H, Sen BH. Comparative evaluation of cyclic fatigue resistance of four different nickel-titanium rotary files with different cross-sectional designs and alloy properties. Clin Oral Investig. 2017;21(5):1527-30.

Tokita D, Ebihara A, Miyara K, Okiji T. Dynamic Torsional and Cyclic Fracture Behavior of ProFile Rotary Instruments at Continuous or Reciprocating Rotation as Visualized with High-speed Digital Video Imaging. J Endod. 2017;43(8):1337-42.

Ferreira FG, Barbosa IB, Scelza P, Montagnana MB, Russano D, Neff J, et al. Noncontact three-dimensional evaluation of surface alterations and wear in NiTi endodontic instruments. Braz Oral Res. 2017;31:1-9.

Downloads

Publicado

2019-07-12

Como Citar

Andreazza, J. V., dos Santos, M. A. M., Pinheiro, L. S., Iglesias, J. E., Lopez, F. U., & Grecca, F. S. (2019). Habilidade de centralização, transporte do canal e modificações de superfície do ProTaper F2 e F3 utilizados em rotação contínua e movimento reciprocante em canais curvos. Revista Da Faculdade De Odontologia De Porto Alegre, 60(1), 8–16. https://doi.org/10.22456/2177-0018.86208

Edição

Seção

Artigos originais