Mechanisms of Acaricide Resistance in Ticks

Authors

DOI:

https://doi.org/10.22456/1679-9216.128913

Abstract

Background: In several countries, including Brazil, the livestock industry plays a key role in the country’s economy. Brazil has the second largest bovine herd in the world and the biggest commercial herd. Ticks are an ongoing problem for both large operation cattle producers and small family farmers. Rhipicephalus microplus causes expressive losses in cattle breeding, since it occurs in important beef production zones like South America, Africa, and Oceania. Some of the negative consequences of tick infestation to cattle breeding are anemia, loss in milk and beef production, and transmission of Babesia bovis and B. bigemina. Significant losses are caused by the cattle tick (R. microplus) in several regions of the world, costing around US$ 3.3 billion per year to the Brazilian livestock industry alone. The tick control methods are mainly based on synthetic acaricides. However, the improvement of current tick control requires the identification of new molecular targets in tick physiology and development of molecule compounds to target important physiology pathways. The strategies proposed to address this issue are expand the knowledge about the molecules involved in the detoxification of chemicals to enhance the efficacy of the acaricides as well as to develop new compounds for chemical control.

Review: Tick control is currently based on chemical acaricides; however, effective control and prevention of tick infestation remain distant goals. In recent decades, a progressive decrease in the efficiency of acaricides due to drug resistance has been observed. Acaricide resistance is an evolutionary adaptation, which implies the existence of behavioral and physiological mechanisms that allow the survival of resistant individuals. Four resistance mechanisms are described: behavioral resistance, reduced drug penetration, target site insensitivity and increased drug detoxification. Augmented drug detoxification may be due to increased activity of enzymes or transporters due to increased gene expression or mutations in some genes. Research focus on mechanisms of acaricide resistance in ticks characterized detoxification pathways based on (1) increased activity of enzymes (cytochrome p450, esterase and GST) which play a role in biochemically altering acaricides towards decreased toxicity and, (2) enhanced excretion of the modified less toxic compounds. To bypass the current problems, a better understanding of the biology, physiology, and molecular biology of the mechanisms of resistance to
acaricides is fundamental to prolong their efficiency in controlling ticks. Moreover, identifying the genes and proteins associated with resistance can support in the development of more sensitive diagnostic methods to identify acaricide resistance, as well as improving control strategies.


Discussion: In the last years, many researchers have been studying resistance mechanisms and important advances have been made which showed that, in several tick species, ABC transporters, esterases, P-450 cytochromes and glutathione-S-transferases participate in acaricide resistance. The characterization of the alterations in the targets in tick physiology and identification of new drugs with potential to tick control are crucial goals to increase tick control.

Keywords: esterases, glutathione S transferases, pyrethroids, organophosphate, acaricide, resistance, parasite, Rhipicephalus microplus, bovine.

Downloads

Download data is not yet available.

References

Aguilar G. 2018. SNPs and other polymorhisms associated with acaricide resistance ini Rhipicephalus microplus. Frontiers in Bioscience. 23(1): 65–82.

Agwunobi D.O., Pei T., Yang J., Wang X., Lv L., Shen R., Yu Z. & Liu J. 2020. Expression profiles of glutathione S-transferases genes in semi-engorged Haemaphysalis longicornis (Acari: Ixodidae) exposed to Cymbopogon citratus essential oil. Systematic and Applied Acarology. 25(5): 918–930.

Allocati N., Masulli M., Di Ilio C. & Federici L. 2018. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis. 7(1): 8.

Anon J., Singh N.K., Singh H. & Rath S.S. 2021. Adult bioassay based Amitraz resistance status in Rhipicephalus microplus populations of Punjab, India. Exploratory Animal and Medical Research. 11(1): 49.

Bain L.J. & LeBlanc G.A. 1996. Interaction of structurally diverse pesticides with the human MDR1 gene product P-glycoprotein. Toxicology and Applied Pharmacology. 141(1): 288–298.

Balabanidou V., Kampouraki A., MacLean M., Blomquist G.J., Tittiger C., Juárez M.P., Mijailovsky S.J., Chalepakis G., Anthousi A., Lynd A., Antoine S., Hemingway J., Ranson H., Lycett G.J. & Vontas J. 2016. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proceedings of the National Academy of Sciences. 113(33): 9268–9273.

Baron S., Barrero R.A., Black M., Bellgard M.I., van Dalen E.M.S., Fourie J. & Maritz-Olivier C. 2018. Differentially expressed genes in response to amitraz treatment suggests a proposed model of resistance to amitraz in R. decoloratus ticks. International Journal for Parasitology: Drugs and Drug Resistance. 8(3): 361–371.

Baron S., van der Merwe N.A., Madder M. & Maritz-Olivier C. 2015. SNP Analysis Infers that Recombination Is Involved in the Evolution of Amitraz Resistance in Rhipicephalus microplus. PLOS ONE. 10(7): e0131341.

Baxter G.D. & Barker S.C. 1999. Isolation of a cDNA for an octopamine-like, G-protein coupled receptor from the cattle tick, Boophilus microplus. Insect Biochemistry and Molecular Biology. 29(5): 461–467.

Becker S., Webster A., Doyle R.L., Martins J.R., Reck J. & Klafke G.M. 2019. Resistance to deltamethrin, fipronil and ivermectin in the brown dog tick, Rhipicephalus sanguineus sensu stricto, Latreille (Acari: Ixodidae). Ticks and Tick-Borne Diseases. 10(5): 1046–1050.

Bendele K.G., Guerrero F.D., Miller R.J., Li A.Y., Barrero R.A., Moolhuijzen P.M., Black M., McCooke J.K., Meyer J., Hill C.A. & Bellgard M.I. 2015. Acetylcholinesterase 1 in populations of organophosphate-resistant North American strains of the cattle tick, Rhipicephalus microplus (Acari: Ixodidae). Parasitology Research. 114(8): 3027–3040.

Bezerra W.A. dos S., Tavares C.P., Rocha C.Q. da, Vaz Junior I. da S., Michels P.A.M., Costa Junior L.M. & Soares A.M. dos S. 2022. Anonaine from Annona crassiflora inhibits glutathione S-transferase and improves cypermethrin activity on Rhipicephalus (Boophilus) microplus (Canestrini, 1887). Experimental Parasitology. 243: 108398.

Bloomquist J.R. 1993. Toxicology, mode of action and target site-mediated resistance to insecticides acting on chloride channels. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology. 106(2): 301–314.

Bloomquist J.R. 1994. Cyclodiene resistance at the insect GABA receptor/chloride channel complex confers broad cross resistance to convulsants and experimental phenylpyrazole insecticides. Archives of Insect Biochemistry and Physiology. 26(1): 69–79.

Bloomquist J.R. 2003. Chloride channels as tools for developing selective insecticides. Archives of Insect Biochemistry and Physiology. 54(4): 145–156.

Broehan G., Kroeger T., Lorenzen M. & Merzendorfer H. 2013. Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genomics. 14(1): 6.

Buss D.S., Mccaffery A.R. & Callaghan A. 2002. Evidence for p-glycoprotein modification of insecticide toxicity in mosquitoes of the Culex pipiens complex: P-glycoprotein modification of insecticide toxicity. Medical and Veterinary Entomology. 16(2): 218–222.

Cafarchia C., Porretta D., Mastrantonio V., Epis S., Sassera D., Iatta R., Immediato D., Ramos R.A.N., Lia R.P., Dantas-Torres F., Kramer L., Urbanelli S. & Otranto D. 2015. Potential role of ATP-binding cassette transporters against acaricides in the brown dog tick Rhipicephalus sanguineus sensu lato: ABC transporters in R. sanguineus. Medical and Veterinary Entomology. 29(1): 88–93.

Casida J.E. 1956. Mode of Action of Pesticides, Metabolism of Organophosphorus Insecticides in Relation to Their Antiesterase Activity, Stability, and Residual Properties. Journal of Agricultural and Food Chemistry. 4(9): 772–785.

Casida J.E. & Durkin K.A. 2013. Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects. Annual Review of Entomology. 58(1): 99–117.

Castro Janer E., Díaz A., Fontes F., Baraibar F., Saporiti T. & Olhagaray M.E. 2021. Molecular survey of pyrethroid and fipronil resistance in isolates of Rhipicephalus microplus in the north of Uruguay. Ticks and Tick-Borne Diseases. 12(5): 101747.

Castro Janer E., Klafke G.M., Fontes F., Capurro M.L. & Schumaker T.S.S. 2019. Mutations in Rhipicephalus microplus GABA gated chloride channel gene associated with fipronil resistance. Ticks and Tick-Borne Diseases. 10(4): 761–765.

Castro-Janer E., Rifran L., González P., Niell C., Piaggio J., Gil A. & Schumaker T.T.S. 2011. Determination of the susceptibility of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) to ivermectin and fipronil by Larval Immersion Test (LIT) in Uruguay. Veterinary Parasitology. 178(1–2): 148–155.

Chen A.C., He H. & Davey R.B. 2007. Mutations in a putative octopamine receptor gene in amitraz-resistant cattle ticks. Veterinary Parasitology. 148(3–4): 379–383.

Chitombo L., Lebani K. & Sungirai M. 2021. Acaricide resistance in Rhipicephalus appendiculatus ticks collected from different farming systems in Zimbabwe. Tropical Animal Health and Production. 53(4): 431.

Cleland T.A. 1996. Inhibitory glutamate receptor channels. Molecular Neurobiology. 13(2): 97–136.

Coles T.B. & Dryden M.W. 2014. Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasites & Vectors. 7(1): 8.

Corley S.W., Jonsson N.N., Piper E.K., Cutulle C., Stear M.J. & Seddon J.M. 2013. Mutation in the Rm AOR gene is associated with amitraz resistance in the cattle tick Rhipicephalus microplus. Proceedings of the National Academy of Sciences. 110(42): 16772–16777.

Corley S.W., Piper E.K. & Jonsson N.N. 2012. Generation of Full-Length cDNAs for Eight Putative GPCnR from the Cattle Tick, R. microplus Using a Targeted Degenerate PCR and Sequencing Strategy. PLoS ONE. 7(3): e32480.

Cossío-Bayúgar R., Martínez-Ibañez F., Aguilar-Díaz H. & Miranda-Miranda E. 2018. Pyrethroid Acaricide Resistance Is Proportional to P-450 Cytochrome Oxidase Expression in the Cattle Tick Rhipicephalus microplus. BioMed Research International. 2018: 1–6.

Cossío-Bayúgar R., Miranda-Miranda E., Martínez-Ibañez F., Narváez-Padilla V. & Reynaud E. 2020. Physiological evidence that three known mutations in the para-sodium channel gene confer cypermethrin knockdown resistance in Rhipicephalus microplus. Parasites & Vectors. 13(1): 370.

Cossio-Bayugar R., Miranda-Miranda E., Ortiz-Najera A.O.-N., Neri-Orantes S. & Olvera-Valencia F. 2008. Cytochrome P-450 Monooxygenase Gene Expression Supports a Multifactorial Origin for Acaricide Resistance in Rhipicephalus microplus. Research Journal of Parasitology. 3(2): 59–66.

Cully D.F., Paress P.S., Liu K.K., Schaeffer J.M. & Arena J.P. 1996. Identification of a Drosophila melanogaster Glutamate-gated Chloride Channel Sensitive to the Antiparasitic Agent Avermectin. Journal of Biological Chemistry. 271(33): 20187–20191.

Cully D.F., Vassilatis D.K., Liu K.K., Paress P.S., Van der Ploeg L.H.T., Schaeffer J.M. & Arena J.P. 1994. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature. 371(6499): 707–711.

Daborn P.J., Lumb C., Boey A., Wong W., ffrench-Constant R.H. & Batterham P. 2007. Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic over-expression. Insect Biochemistry and Molecular Biology. 37(5): 512–519.

Danø K. 1973. Active outward transport of daunomycin in resistant ehrlich ascites tumor cells. Biochimica et Biophysica Acta (BBA) - Biomembranes. 323(3): 466–483.

Dantas-Torres F., Chomel B.B. & Otranto D. 2012. Ticks and tick-borne diseases: A One Health perspective. Trends in Parasitology. 28(10): 437–446.

Dantas-Torres F., Fernandes Martins T., Muñoz-Leal S., Onofrio V.C. & Barros-Battesti D.M. 2019. Ticks (Ixodida: Argasidae, Ixodidae) of Brazil: Updated species checklist and taxonomic keys. Ticks and Tick-Borne Diseases. 10(6): 101252.

De Marco L., Sassera D., Epis S., Mastrantonio V., Ferrari M., Ricci I., Comandatore F., Bandi C., Porretta D. & Urbanelli S. 2017. The choreography of the chemical defensome response to insecticide stress: insights into the Anopheles stephensi transcriptome using RNA-Seq. Scientific Reports. 7(1): 41312.

Dean M., Rzhetsky A. & Allikmets R. 2001. The human ATP-binding cassette (ABC) transporter superfamily. Genome Research. 11(7): 1156–1166.

Denecke S., Fusetto R. & Batterham P. 2017. Describing the role of Drosophila melanogaster ABC transporters in insecticide biology using CRISPR-Cas9 knockouts. Insect Biochemistry and Molecular Biology. 91: 1–9.

Dermauw W., Osborne E., Clark R.M., Grbić M., Tirry L. & Van Leeuwen T. 2013. A burst of ABC genes in the genome of the polyphagous spider mite Tetranychus urticae. BMC Genomics. 14(1): 317.

Du W., Awolola T.S., Howell P., Koekemoer L.L., Brooke B.D., Benedict M.Q., Coetzee M. & Zheng L. 2005. Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Molecular Biology. 14(2): 179–183.

Duscher G.G., Galindo R.C., Tichy A., Hummel K., Kocan K.M. & de la Fuente J. 2014. Glutathione S-transferase affects permethrin detoxification in the brown dog tick, Rhipicephalus sanguineus. Ticks and Tick-Borne Diseases. 5(3): 225–233.

Dzemo W.D., Thekisoe O. & Vudriko P. 2022. Development of acaricide resistance in tick populations of cattle: A systematic review and meta-analysis. Heliyon. 8(1): e08718.

Eiden A.L., Kaufman P.E., Oi F.M., Dark M.J., Bloomquist J.R. & Miller R.J. 2017. Determination of metabolic resistance mechanisms in pyrethroid-resistant and fipronil-tolerant brown dog ticks: R. sanguineus metabolic resistance. Medical and Veterinary Entomology. 31(3): 243–251.

Enayati A.A., Ranson H. & Hemingway J. 2005. Insect glutathione transferases and insecticide resistance. Insect Molecular Biology. 14(1): 3–8.

Epis S., Porretta D., Mastrantonio V., Comandatore F., Sassera D., Rossi P., Cafarchia C., Otranto D., Favia G., Genchi C., Bandi C. & Urbanelli S. 2014. ABC transporters are involved in defense against permethrin insecticide in the malaria vector Anopheles stephensi. Parasites & Vectors. 7(1): 349.

Evans P.D. & Gee J.D. 1980. Action of formamidine pesticides on octopamine receptors. Nature. 287(5777): 60–62.

Evans P.D. & Maqueira B. 2005. Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invertebrate Neuroscience. 5(3–4): 111–118.

Feng X., Li M. & Liu N. 2018. Carboxylesterase genes in pyrethroid resistant house flies, Musca domestica. Insect Biochemistry and Molecular Biology. 92: 30–39.

Fernández-Salas A., Rodríguez-Vivas R.I. & Alonso-Díaz M.A. 2012. First report of a Rhipicephalus microplus tick population multi-resistant to acaricides and ivermectin in the Mexican tropics. Veterinary Parasitology. 183(3–4): 338–342.

Ffrench-Constant R.H., Mortlock D.P., Shaffer C.D., MacIntyre R.J. & Roush R.T. 1991. Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate gamma-aminobutyric acid subtype A receptor locus. Proceedings of the National Academy of Sciences. 88(16): 7209–7213.

Fournier D. 2005. Mutations of acetylcholinesterase which confer insecticide resistance in insect populations. Chemico-Biological Interactions. 157–158: 257–261.

Freitas D.R.J. de, Vaz Junior I. da S. & Masuda A. 2008. Expressão e atividade enzimática de glutationa s-transferase em tecidos de fêmeas de Boophilus microplus. Revista Brasileira de Parasitologia Veterinária. 17(2): 99–104.

Gaudêncio F.N., Klafke G.M., Tunholi-Alves V.M., Ferreira T.P., Coelho C.N., da Fonseca A.H., da Costa Angelo I. & Pinheiro J. 2017. Activity of carboxylesterases, glutathione-S-transferase and monooxygenase on Rhipicephalus microplus exposed to fluazuron. Parasitology International. 66(5): 584–587.

Germann U.A. & Chambers T.C. 1998. Molecular analysis of multidrug transporter, P-glycoprotein. Cytotechnology. 27(1/3): 31–60.

Gonzalez D., Fraichard S., Grassein P., Delarue P., Senet P., Nicolaï A., Chavanne E., Mucher E., Artur Y., Ferveur J.-F., Heydel J.-M., Briand L. & Neiers F. 2018. Characterization of a Drosophila glutathione transferase involved in isothiocyanate detoxification. Insect Biochemistry and Molecular Biology. 95: 33–43.

Grisi L., Leite R.C., Martins J.R. de S., Barros A.T.M. de, Andreotti R., Cançado P.H.D., León A.A.P. de, Pereira J.B. & Villela H.S. 2014. Reassessment of the potential economic impact of cattle parasites in Brazil. Revista Brasileira de Parasitologia Veterinária. 23(2): 150–156.

Gross A.D., Temeyer K.B., Day T.A., De León A.A.P., Kimber M.J. & Coats J.R. 2015. Pharmacological characterization of a tyramine receptor from the southern cattle tick, Rhipicephalus (Boophilus) microplus. Insect Biochemistry and Molecular Biology. 63: 47–53.

Guerrero F.D., Lovis L. & Martins J.R. 2012. Acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus. Revista Brasileira de Parasitologia Veterinária. 21(1): 1–6.

Hammerstrom R.J. 1958. Insect resistance to insecticides. Public Health Reports (Washington, D.C.: 1896). 73(12): 1126–1131.

Han K.-A., Millar N.S. & Davis R.L. 1998. A Novel Octopamine Receptor with Preferential Expression in Drosophila Mushroom Bodies. The Journal of Neuroscience. 18(10): 3650–3658.

Hemingway & Karunaratne. 1998. Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Medical and Veterinary Entomology. 12(1): 1–12.

Hernandez E.P., Kusakisako K., Talactac M.R., Galay R.L., Hatta T., Fujisaki K., Tsuji N. & Tanaka T. 2018. Glutathione S-transferases play a role in the detoxification of flumethrin and chlorpyrifos in Haemaphysalis longicornis. Parasites & Vectors. 11(1): 460.

Hernandez E.P., Kusakisako K., Talactac M.R., Galay R.L., Hatta T., Matsuo T., Fujisaki K., Tsuji N. & Tanaka T. 2018. Characterization and expression analysis of a newly identified glutathione S-transferase of the hard tick Haemaphysalis longicornis during blood-feeding. Parasites and Vectors. 11(1).

Hernandez R., Guerrero F.D., George J.E. & Wagner G.G. 2002. Allele frequency and gene expression of a putative carboxylesterase-encoding gene in a pyrethroid resistant strain of the tick Boophilus microplus. Insect Biochemistry and Molecular Biology. 32(9): 1009–1016.

Hernandez R., He H., Chen A.C., Waghela S.D., Wayne Ivie G., George J.E. & Gale Wagner G. 2000. Identification of a point mutation in an esterase gene in different populations of the southern cattle tick, Boophilus microplus. Insect Biochemistry and Molecular Biology. 30(10): 969–977.

Hodgson E., Rose R.L., Goh D.K.S., Rock G.C. & Roe R.M. 1993. Insect cytochrome P -450: metabolism and resistance to insecticides. Biochemical Society Transactions. 21(4): 1060–1065.

Hope M., Menzies M. & Kemp D. 2010. Identification of a Dieldrin Resistance-Associated Mutation in Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Journal of Economic Entomology. 103(4): 1355–1359.

Jongejan F. & Uilenberg G. 2004. The global importance of ticks. Parasitology. 129: S3–S14.

Jonsson N.N. 2006. The productivity effects of cattle tick (Boophilus microplus) infestation on cattle, with particular reference to Bos indicus cattle and their crosses. Veterinary Parasitology. 137(1–2): 1–10.

Jonsson N.N. 2018. Molecular biology of amitraz resistance in cattle ticks of the genus Rhipicephalus. Frontiers in Bioscience. 23(2): 796–810.

Juliano R.L. & Ling V. 1976. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochimica et Biophysica Acta (BBA) - Biomembranes. 455(1): 152–162.

Jyoti, Singh N.K., Singh H., Singh N.K. & Rath S.S. 2016. Multiple mutations in the acetylcholinesterase 3 gene associated with organophosphate resistance in Rhipicephalus (Boophilus) microplus ticks from Punjab, India. Veterinary Parasitology. 216: 108–117.

Klafke G.M., Miller R.J., Tidwell J., Barreto R., Guerrero F.D., Kaufman P.E. & Pérez de León A.A. 2017. Mutation in the Sodium Channel Gene Corresponds With Phenotypic Resistance of Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) to Pyrethroids. Journal of Medical Entomology. 54(6): 1639–1642.

Klafke G.M., Miller R.J., Tidwell J.P., Thomas D.B., Sanchez D., Feria Arroyo T.P. & Pérez de León A.A. 2019. High-resolution melt (HRM) analysis for detection of SNPs associated with pyrethroid resistance in the southern cattle fever tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). International Journal for Parasitology: Drugs and Drug Resistance. 9: 100–111.

Konno T., Hodgson E. & Dauterman W.C. 1989. Studies on methyl parathion resistance in Heliothis virescens. Pesticide Biochemistry and Physiology. 33(2): 189–199.

Kostaropoulos I., Papadopoulos A.I., Metaxakis A., Boukouvala E. & Papadopoulou-Mourkidou E. 2001. Glutathione S–transferase in the defence against pyrethroids in insects. Insect Biochemistry and Molecular Biology. 31(4–5): 313–319.

Kumar R., Klafke G.M. & Miller R.J. 2020. Voltage-gated sodium channel gene mutations and pyrethroid resistance in Rhipicephalus microplus. Ticks and Tick-Borne Diseases. 11(3): 101404.

Kwon D.H., Yoon K.S., Clark J.M. & Lee S.H. 2010. A point mutation in a glutamate-gated chloride channel confers abamectin resistance in the two-spotted spider mite, Tetranychus urticae Koch: Abamectin resistance in T. urticae. Insect Molecular Biology. no-no.

de La Canal L.H., Dall’Agnol B., Webster A., Reck J., Martins J.R. & Klafke G.M. 2021. Mechanisms of amitraz resistance in a Rhipicephalus microplus strain from southern Brazil. Ticks and Tick-Borne Diseases. 12(5): 101764.

Lara F.A., Pohl P.C., Gandara A.C., Ferreira J. da S., Nascimento-Silva M.C., Bechara G.H., Sorgine M.H.F., Almeida I.C., Vaz I. da S. & Oliveira P.L. 2015. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells. PLOS ONE. 10(8): e0134779.

Le Gall V.L., Klafke G.M. & Torres T.T. 2018. Detoxification mechanisms involved in ivermectin resistance in the cattle tick, Rhipicephalus (Boophilus) microplus. Scientific Reports. 8(1): 12401.

Li A.Y., Davey R.B., Miller R.J. & George J.E. 2003. Resistance to Coumaphos and Diazinon in Boophilus microplus (Acari: Ixodidae) and Evidence for the Involvement of an Oxidative Detoxification Mechanism. Journal of Medical Entomology. 40(4): 482–490.

Liu N., Li M., Gong Y., Liu F. & Li T. 2015. Cytochrome P450s – Their expression, regulation, and role in insecticide resistance. Pesticide Biochemistry and Physiology. 120: 77–81.

Liu S., Zhou S., Tian L., Guo E., Luan Y., Zhang J. & Li S. 2011. Genome-wide identification and characterization of ATP-binding cassette transporters in the silkworm, Bombyx mori. BMC Genomics. 12(1): 491.

Lokeshwari D., Krishna Kumar N.K. & Manjunatha H. 2016. Multiple Mutations on the Second Acetylcholinesterase Gene Associated With Dimethoate Resistance in the Melon Aphid, Aphis gossypii (Hemiptera: Aphididae). Journal of Economic Entomology. 109(2): 887–897.

Luns D.A.R., Martins R., Pombal S., Rodilla J.M.L., Githaka N.W., Vaz I. da S. & Logullo C. 2021. Effect of essential oils against acaricide‐susceptible and acaricide-resistant Rhipicephalus ticks. Experimental and Applied Acarology. 83(4): 597–608.

Mangia C., Vismarra A., Genchi M., Epis S., Bandi C., Grandi G., Bell-Sakyi L., Otranto D., Passeri B. & Kramer L. 2018. Exposure to amitraz, fipronil and permethrin affects cell viability and ABC transporter gene expression in an Ixodes ricinus cell line. Parasites & Vectors. 11(1): 437.

Matsumura F. & Ghiasuddin S.M. 1983. Evidence for similarities between cyclodiene type insecticides and picrotoxinin in their action mechanisms. Journal of Environmental Science and Health, Part B. 18(1): 1–14.

Menozzi P., Shi M., Lougarre A., Tang Z. & Fournier D. 2004. Fournier D. Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations. BMC Evolutionary Biology. 4(1): 4.

Mladenović M., Arsić B., Stanković N., Mihović N., Ragno R., Regan A., Milićević J., Trtić-Petrović T. & Micić R. 2018. The Targeted Pesticides as Acetylcholinesterase Inhibitors: Comprehensive Cross-Organism Molecular Modelling Studies Performed to Anticipate the Pharmacology of Harmfulness to Humans In Vitro. Molecules. 23(9): 2192.

Nagar G., Upadhaya D., Sharma A.K., Kumar R., Fular A. & Ghosh S. 2021. Association between overexpression of cytochrome P450 genes and deltamethrin resistance in Rhipicephalus microplus. Ticks and Tick-Borne Diseases. 12(2): 101610.

Nagaya Y., Kutsukake M., Chigusa S.I. & Komatsu A. 2002. A trace amine, tyramine, functions as a neuromodulator in Drosophila melanogaster. Neuroscience Letters. 329(3): 324–328.

Nathanson J.A. 1985. Characterization of octopamine-sensitive adenylate cyclase: elucidation of a class of potent and selective octopamine-2 receptor agonists with toxic effects in insects. Proceedings of the National Academy of Sciences. 82(2): 599–603.

Obaid M.K., Islam N., Alouffi A., Khan A.Z., da Silva Vaz I., Tanaka T. & Ali A. 2022. Acaricides Resistance in Ticks: Selection, Diagnosis, Mechanisms, and Mitigation. Frontiers in Cellular and Infection Microbiology. 12: 941831.

Ozelame K.P.C., Mattia M.M.C., Dedavid e Silva L.A., Randall L.M., Corvo I., Saporiti T., Seixas A., da Silva Vaz I. & Alvarez G. 2022. Novel tick glutathione transferase inhibitors as promising acaricidal compounds. Ticks and Tick-Borne Diseases. 13(5): 101970.

Pereira M.C., Gasparotto A.E., Jurgilas J.P., da Silva L.A.C., Pereira M.C., Silveira S.S., Silva T.N., Arnosti A. & Camargo-Mathias M.I. 2017. Detrimental effect of deltamethrin on the central nervous system (synganglion) of Rhipicephalus sanguineus ticks. Experimental and Applied Acarology. 71(2): 159–169.

Perner J., Kotál J., Hatalová T., Urbanová V., Bartošová-Sojková P., Brophy P.M. & Kopáček P. 2018. Inducible glutathione S-transferase (Ir GST1) from the tick Ixodes ricinus is a haem-binding protein. Insect Biochemistry and Molecular Biology. 95: 44–54.

Pohl P.C., Carvalho D.D., Daffre S., da Silva Vaz Jr I. & Masuda A. 2014. In vitro establishment of ivermectin-resistant Rhipicephalus microplus cell line and the contribution of ABC transporters on the resistance mechanism. Veterinary Parasitology. 204(3–4): 316–322.

Pohl P.C., Klafke G.M., Carvalho D.D., Martins J.R., Daffre S., da Silva Vaz I. & Masuda A. 2011. ABC transporter efflux pumps: A defense mechanism against ivermectin in Rhipicephalus (Boophilus) microplus. International Journal for Parasitology. 41(13–14): 1323–1333.

Pohl P.C., Klafke G.M., Júnior J.R., Martins J.R., da Silva Vaz I. & Masuda A. 2012. ABC transporters as a multidrug detoxification mechanism in Rhipicephalus (Boophilus) microplus. Parasitology Research. 111(6): 2345–2351.

Qian W., Liu N., Yang Y., Liu J., He J., Chen Z., Li M. & Qiu X. 2021. A survey of insecticide resistance-conferring mutations in multiple targets in Anopheles sinensis populations across Sichuan, China. Parasites & Vectors. 14(1): 169.

Ranson H., Claudianos C., Ortelli F., Abgrall C., Hemingway J., Sharakhova M.V., Unger M.F., Collins F.H. & Feyereisen R. 2002. Evolution of Supergene Families Associated with Insecticide Resistance. Science. 298(5591): 179–181.

Ranson H., Rossiter L., Ortelli F., Jensen B., Wang X., Roth C.W., Collins F.H. & Hemingway J. 2001. Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochemical Journal. 359(2): 295–304.

Reck J., Klafke G.M., Webster A., Dall’Agnol B., Scheffer R., Souza U.A., Corassini V.B., Vargas R., dos Santos J.S. & de Souza Martins J.R. 2014. First report of fluazuron resistance in Rhipicephalus microplus: A field tick population resistant to six classes of acaricides. Veterinary Parasitology. 201(1–2): 128–136.

Rispe C., Hervet C., de la Cotte N., Daveu R., Labadie K., Noel B., Aury J.-M., Thany S., Taillebois E., Cartereau A., Le Mauf A., Charvet C.L., Auger C., Courtot E., Neveu C. & Plantard O. 2022. Correction: Transcriptome of the synganglion in the tick Ixodes ricinus and evolution of the cys-loop ligand-gated ion channel family in ticks. BMC Genomics. 23(1): 502.

Robbertse L., Baron S., van der Merwe N.A., Madder M., Stoltsz W.H. & Maritz-Olivier C. 2016. Genetic diversity, acaricide resistance status and evolutionary potential of a Rhipicephalus microplus population from a disease-controlled cattle farming area in South Africa. Ticks and Tick-Borne Diseases. 7(4): 595–603.

Rodriguez-Vivas R.I., Jonsson N.N. & Bhushan C. 2018. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitology Research. 117(1): 3–29.

Roma G.C., Camargo Mathias M.I., Nunes P.H. & Bechara G.H. 2014. Ultrastructure of the synganglion in the larvae and nymphs of tick Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae). International Journal of Acarology. 40(3): 207–213.

Roncalli V., Cieslak M.C., Passamaneck Y., Christie A.E. & Lenz P.H. 2015. Glutathione S-Transferase (GST) Gene Diversity in the Crustacean Calanus finmarchicus – Contributors to Cellular Detoxification. PLOS ONE. 10(5): e0123322.

Rosario-Cruz R. 2009. Genetic basis and impact of tick acaricide resistance. Frontiers in Bioscience. 14: 2657-2665.

Roth C.W., Holm I., Graille M., Dehoux P., Rzhetsky A., Wincker P., Weissenbach J. & Brey P.T. 2003. Identification of the Anopheles gambiae ATP-binding cassette transporter superfamily genes. Molecules and Cells. 15(2): 150–158.

Sarli M., Torrents J., Morel N. & Nava S. 2022. Analysis of sequence variations in the GABA gated chloride gene associated with resistance to fipronil in Rhipicephalus (Boophilus) microplus ticks from Argentina. Ticks and Tick-Borne Diseases. 13(6): 102030.

Scharf M.E., Neal J.J., Marcus C.B. & Bennett G.W. 1998. Cytochrome p450 purification and immunological detection in an insecticide resistant strain of german cockroach (Blattella germanica, l.). Insect Biochemistry and Molecular Biology. 28(1): 1–9.

Schnitzerling H.J., Nolan J. & Hughes S. 1983. Toxicology and metabolism of some synthetic pyrethroids in larvae of susceptible and resistant strains of the cattle tick Boophilus microplus (Can.). Pesticide Science. 14(1): 64–72.

Selles S.M.A., Kouidri M., González M.G., González J., Sánchez M., González-Coloma A., Sanchis J., Elhachimi L., Olmeda A.S., Tercero J.M. & Valcárcel F. 2021. Acaricidal and Repellent Effects of Essential Oils against Ticks: A Review. Pathogens. 10(11): 1379.

Shahein Y., Abouelella A. & Hame R. 2013. Glutathione S-Transferase Genes from Ticks. In: Radis-Baptista G. (Ed). Integr. View Mol. Recognit. Toxinology - Anal. Proced. Biomed. Appl. InTech.

Sheehan D., Meade G., Foley V.M. & Dowd C.A. 2001. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal. 360(1): 1–16.

Shi H., Pei L., Gu S., Zhu S., Wang Y., Zhang Y. & Li B. 2012. Glutathione S-transferase (GST) genes in the red flour beetle, Tribolium castaneum, and comparative analysis with five additional insects. Genomics. 100(5): 327–335.

da Silva Vaz I., Torino Lermen T., Michelon A., Sanchez Ferreira C.A., Joaquim de Freitas D.R., Termignoni C. & Masuda A. 2004. Effect of acaricides on the activity of a Boophilus microplus glutathione S-transferase. Veterinary Parasitology. 119(2–3): 237–245.

da Silva Vaz Jnr I., Imamura S., Ohashi K. & Onuma M. 2004. Cloning, expression and partial characterization of a Haemaphysalis longicornis and a Rhipicephalus appendiculatus glutathione S-transferase. Insect Molecular Biology. 13(3): 329–335.

Smelt C.L.C., Sanders V.R., Puinean A.M., Lansdell S.J., Goodchild J. & Millar N.S. 2021. Agonist and antagonist properties of an insect GABA-gated chloride channel (RDL) are influenced by heterologous expression conditions. PLOS ONE. 16(7): e0254251.

Soderlund D.M. 2012. Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Archives of Toxicology. 86(2): 165–181.

Sonenshine D.E. & Roe R.M. 2013. Biology of ticks, volume 1. Second Edi. Oxford University Press.

Stone N.E., Olafson P.U., Davey R.B., Buckmeier G., Bodine D., Sidak-Loftis L.C., Giles J.R., Duhaime R., Miller R.J., Mosqueda J., Scoles G.A., Wagner D.M. & Busch J.D. 2014. Multiple mutations in the para-sodium channel gene are associated with pyrethroid resistance in Rhipicephalus microplus from the United States and Mexico. Parasites & Vectors. 7(1): 456.

Sturm A., Cunningham P. & Dean M. 2009. The ABC transporter gene family of Daphnia pulex. BMC Genomics. 10(1): 170.

Sungirai M., Baron S., Moyo D.Z., De Clercq P., Maritz-Olivier C. & Madder M. 2018. Genotyping acaricide resistance profiles of Rhipicephalus microplus tick populations from communal land areas of Zimbabwe. Ticks and Tick-Borne Diseases. 9(1): 2–9.

Takata M., Misato S., Ozoe F. & Ozoe Y. 2020. A point mutation in the β‐adrenergic‐like octopamine receptor: possible association with amitraz resistance. Pest Management Science. 76(11): 3720–3728.

Tavares C.P., Sabadin G.A., Sousa I.C., Gomes M.N., Soares A.M.S., Monteiro C.M.O., Vaz I.S. & Costa-Junior L.M. 2022. Effects of carvacrol and thymol on the antioxidant and detoxifying enzymes of Rhipicephalus microplus (Acari: Ixodidae). Ticks and Tick-Borne Diseases. 13(3): 101929.

Temeyer K.B., Olafson P.U. & Miller R.J. 2009. Genotyping Mutations in BmAChE3 : A Survey of Organophosphate-Resistant and -Susceptible Strains of Rhipicephalus (Boophilus) microplus. Journal of Medical Entomology. 46(6): 1355–1360.

Temeyer K.B., Pruett J.H. & Olafson P.U. 2010. Baculovirus expression, biochemical characterization and organophosphate sensitivity of rBmAChE1, rBmAChE2, and rBmAChE3 of Rhipicephalus (Boophilus) microplus. Veterinary Parasitology. 172(1–2): 114–121.

Torrents J., Sarli M., Rossner M.V., Toffaletti J.R., Morel N., Martínez N.C., Webster A., Mangold A.J., Guglielmone A.A. & Nava S. 2020. Resistance of the cattle tick Rhipicephalus (Boophilus) microplus to ivermectin in Argentina. Research in Veterinary Science. 132: 332–337.

Villarino M.A., Waghela S.D. & Wagner G.G. 2003. Biochemical Detection of Esterases in the Adult Female Integument of Organophosphate-Resistant Boophilus Microplus (Acari: Ixodidae). Journal of Medical Entomology. 40(1): 52–57.

Wang K., Liu M., Wang Y., Song W. & Tang P. 2020. Identification and functional analysis of cytochrome P450 CYP346 family genes associated with phosphine resistance in Tribolium castaneum. Pesticide Biochemistry and Physiology. 168: 104622.

Wang X., Wang R., Yang Y., Wu S., O’Reilly A.O. & Wu Y. 2016. A point mutation in the glutamate-gated chloride channel of Plutella xylostella is associated with resistance to abamectin: A mutated PxGluCl confers abamectin resistance. Insect Molecular Biology. 25(2): 116–125.

Wolstenholme A.J. 2012. Glutamate-gated Chloride Channels. Journal of Biological Chemistry. 287(48): 40232–40238.

Yawa M., Nyangiwe N., Jaja I., Marufu M. & Kadzere C. 2022. Acaricide resistance of Rhipicephalus decoloratus ticks collected from communal grazing cattle in South Africa. Journal of Advanced Veterinary and Animal Research. 9(1): 33.

Yu F.H. & Catterall W.A. 2003. Overview of the voltage-gated sodium channel family. Genome Biology. 4(3): 207.

Yu Q., Lu C., Li B., Fang S., Zuo W., Dai F., Zhang Z. & Xiang Z. 2008. Identification, genomic organization and expression pattern of glutathione S-transferase in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology. 38(12): 1158–1164.

Zhao X., Salgado V.L., Yeh J.Z. & Narahashi T. 2003. Differential Actions of Fipronil and Dieldrin Insecticides on GABA-Gated Chloride Channels in Cockroach Neurons. Journal of Pharmacology and Experimental Therapeutics. 306(3): 914–924.

Zhao X., Yeh J.Z., Salgado V.L. & Narahashi T. 2004. Fipronil Is a Potent Open Channel Blocker of Glutamate-Activated Chloride Channels in Cockroach Neurons. Journal of Pharmacology and Experimental Therapeutics. 310(1): 192–201.

Zhao X., Yeh J.Z., Salgado V.L. & Narahashi T. 2005. Sulfone Metabolite of Fipronil Blocks γ-Aminobutyric Acid- and Glutamate-Activated Chloride Channels in Mammalian and Insect Neurons. Journal of Pharmacology and Experimental Therapeutics. 314(1): 363–373.

Zheng Y., Priest B., Cully D.F. & Ludmerer S.W. 2003. RdlDv, a novel GABA-gated chloride channel gene from the American dog tick Dermacentor variabilis. Insect Biochemistry and Molecular Biology. 33(6): 595–599.

Zhou X., Hohman A.E. & Hsu W.H. 2022. Current review of isoxazoline ectoparasiticides used in veterinary medicine. Journal of Veterinary Pharmacology and Therapeutics. 45(1): 1–15.

Additional Files

Published

2023-01-05

How to Cite

Waldman, J. ., Marcondes Klafke, G. ., & da Silva Vaz Júnior, I. (2023). Mechanisms of Acaricide Resistance in Ticks. Acta Scientiae Veterinariae, 51. https://doi.org/10.22456/1679-9216.128913

Issue

Section

Review