Biofilm Formation by Coagulase-Positive Staphylococcus aureus Isolated from Mozzarella Cheese Elaborated with Buffalo Milk and its Effect on Sensitivity to Sanitizers

Authors

  • Anelise Bravo Friedriczewski Inspeção de Produtos de Origem Animal, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
  • Eliezer Ávila Gandra Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
  • Rita de Cássia dos Santos da Conceição Inspeção de Produtos de Origem Animal, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
  • Natacha Deboni Cereser Inspeção de Produtos de Origem Animal, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
  • Lauren Machado Moreira Inspeção de Produtos de Origem Animal, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
  • Cláudio Dias Timm Inspeção de Produtos de Origem Animal, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.

DOI:

https://doi.org/10.22456/1679-9216.81813

Abstract

Background: The buffalo milk mozzarella cheese is a new product in the market, with high consumer acceptance and excellent prospects for trade. The cheese is rich in nutrients, which favors the proliferation of microorganisms that can cause food-borne diseases in the consumer. Staphylococcus aureus can cause gastro-enteritis in humans by the production of enterotoxins in food. One problem that may hinder the elimination of undesirable microorganisms in the food industry is the formation of biofilms. The objective of this study was to determine the effect of biofilm formation by Staphylococcus aureus isolated from buffalo mozzarella cheese on sensitivity to sanitizers.

Materials, Methods & Results: Fifty samples of buffalo mozzarella cheese were analyzed to investigate the presence of S. aureus. The isolates were obtained through microbiological analysis and identified by PCR. The similarity of the strains was compared through rep-PCR. The distinct strains were tested for biofilm formation in microtiter plates. Soy Tripticase Broth (TSB) was placed in each well of the microtiter plate and overnight cultures of each strain was added. Wells without bacterial culture were used as controls. A villous cap was then placed on the plate and incubated for 48 h at 37°C. During incubation, the biofilms formed on the surface of the villi of the caps. For quantification of biofilm formation, material that remained attached to the cap was stained with crystal violet, the stained biofilm was extracted and the OD570 of each well was measured. Each strain was classified as non-biofilm forming, weak forming, moderately formed or formative strong. Strong forming and non-biofilm forming strains were tested on high density polyethylene, stainless steel and glass surfaces. Plates of 4 cm² of the different materials were placed in TSB where the culture of each isolate was inoculated separately. At each 48 h incubation the plates were washed to remove unbound cells and re-inserted into TSB without the inoculum. After five replicates of the procedure, sterile swabs were passed over the entire surface of each plate for counting in Baird-Parker agar. They were also tested for sensitivity to sodium hypochlorite and iodine after biofilm formation. The biofilm plates were immersed in flasks containing sanitizers, where they remained for 10 min. At the established contact time, the plates were immersed in neutralizing solution for 30 s. After washing with PBS, a sterile swab was passed on the surface of each plate and counts on Baird-Parker agar were performed. The bands profiles obtained on rep-PCR were identical when compared to isolates from the same sample, indicating that each sample was contaminated with only one S. aureus strain. From the twenty S. aureus strain identified, two isolates were classified as strong biofilm formers, seven as moderate formers, ten weak formers and one as non-biofilm builder. The two strong forming strains produced biofilm on the three surfaces tested. The application of sodium hypochlorite and iodine sanitizers promoted a reduction of approximately 2 log bacterial populations on all surfaces of both the biofilm and non-forming strains.

Discussion: Most strains of S. aureus isolated from buffalo milk mozzarella cheese have the ability to form biofilm on the surfaces of equipment and utensils that have stainless steel, glass or high density polyethylene components. Although biofilm forming strains are no longer resistant to sanitizers sodium hypochlorite and iodine than non-forming sanitizers, they reach higher concentrations in the biofilm, resulting in larger bacterial populations remaining after application of the sanitizers. These results support the recommendation that the good hygienic practices adopted by industries processing buffalo milk mozzarella cheese should include specific measures to control the Staphylococcus aureus contamination.

Downloads

Download data is not yet available.

References

Associação Brasileira de Criadores de Búfalos (ABCB). 2016. Disponível em: http://www.bufalo.com.br/laticinios. html. [Acessed online in June 2017].

Andrade N.J., Bridgeman T.A. & Zottola E.A. 1998. Bacteriocidal activity of sanitizers against Enterococcus faecium attached to stainless steel as determined by plate count and impedance methods. Journal of Food Protection. 61(7): 833-838.

Boari C.A., Alves M.P., Tebaldi V.M.R., Savian T.V. & Piccoli R.H. 2009. Formação de biofilme em aço inoxidável por Aeromonas hydrophila e Staphylococcus aureus usando leite e diferentes condições de cultivo. Ciência e Tecnologia de Alimentos. 29(4): 886-895.

Brasil. 2003. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 62, de 26/08/2003. Métodos Analíticos Oficiais para Análises Microbiológicas para Controle de Produtos de Origem Animal e Água. 18 set. 2003. Seção I. Brasília: Diário Oficial da União, pp.14-51.

Braem G., De Vliegher S., Supré K., Haesebrouck F., Leroy F. & De Vuyst L. 2011. (GTG)5-PCR fingerprinting for the classification and identification of coagulase-negative Staphylococcus species from bovine milk and teat apices: A comparison of type strains and field isolates. Veterinary Microbiology. 147: 67-74.

Cloete T.E. 2003. Resistance mechanism of bacteria to antimicrobial compounds. International Biodeterioration & Biodegradation. 51(4): 277-282.

Coelho S.M.O., Pereira I.A., Soares L.C., Pribul B.R. & Sousa M.M.S. 2011. Short communication: Profile of virulence factors of Staphylococcus aureus isolated from subclinical bovine mastitis in the state of Rio de Janeiro. Journal of Dairy Science. 94(10): 3305-3310.

Cunha S.A. & Cunha R.M. 2007. Toxinfecção alimentar por Staphylococcus aureus através do leite e seus derivados, bem como elevado potencial patogênico de resistência às drogas. Revista Saúde & Ambiente. 2(1): 105-114.

Gandra E.A., Fernandez M.A., Silva J.A. & Silva W.P. 2016. Detection by multiplex PCR of Staphylococcus aureus, S. intermedius and S. hyicus in artificially contaminated milk. Revista Ciência Rural. 46(8): 1418-1423.

Janssens J.C.A., Steenackrs H., Robijns S., Gellens E., Levin J., Zhao H., Hermans K., Coster D.D., Verhoeven L.T., Marchal K., Vanderleyden J., Vos E.D. & Keersmaelker J.C.S. 2008. Brominated Furanones Inhibit Biofilm Formation by Salmonella enterica Serovar Typhimurium. Applied and Environmental Microbiology. 74(21): 6639-6648.

Kasnowski M.C., Mantilla S.P.S., Oliveira L.A.T. & Franco R.M. 2010. Formação de biofilme na indústria de alimentos e métodos de avaliação de superfícies. Revista Científica Eletrônica de Medicina Veterinária. 8(15): 1-23.

Koelln S.T.F., Mattana A. & Hermes E. 2009. Avaliação Microbiológica do queijo mussarella e queijo colonial comercializado na região oeste do Paraná. Revista Brasileira de Tecnologia Agroindustrial. 3(2): 66-74.

Langsrud S., Sidhu M.S., Heir E. & Holck A.L. 2003. Bacterial disinfectant resistance – a challenge for the food industry. International Biodeterioration & Biodegradation. 51(4): 283-290.

Marques C.S., Rezende S.O.G.J., Alves F.A.L., Silva C.B., Alves E., Abreu R.L. & Piccoli H.R. 2007. Formação de biofilme por Staphylococcus aureus na superfície de aço inoxidável e vidro e sua resistência a alguns sanificantes químicos. Brazilian Journal of Microbiology. 38(3): 538-543.

Melo P.C., Ferreira L.M., Nader F.A., Zafalon L.F. & Vicente H.I.G. 2012. Análise fenotípica e molecular da produção de biofilme por estirpes de Staphylococcus aureus isoladas de casos de mastite subclínica bovina. Bioscience Journal. 28(1): 94-99.

Milan C., Agostinetto A., Conceição H.L. & Gonzalez C.D.T. 2015. Sanitizer resistance of biofilm-forming Salmonella isolated from meat products. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 6(2): 642-646.

Mohapatra B.R., Broersma K. & Mazumder A. 2007. Comparison of the five rep-PCR genomic fingerprinting methods for differentiation of fecal Escherichia coli from humans, poultry and wild birds. Microbiology Letters. 277: 98-106.

Nascimento H.M., Delgado D.A. & Barbaric I.V. 2010. Avaliação da aplicação de agentes sanitizantes como controladores do crescimento microbiano na indústria alimentícia. Revista Ceciliana. 2(1): 11-13.

Oliveira M.M.M., Brugnetra F.D. & Piccoli H.R. 2010. Biofilmes Microbianos na Indústria de Alimentos: uma revisão. Revista Instituto Adolfo Lutz. 69(3): 277-284.

Rasschaert G., Houf K., Imberechts H., Grijspeerdt K., De Zutter L. & Heyndrickx M. 2005. Comparison of five repetitive-sequence-based PCR typing methods for molecular discrimination of Salmonella enterica isolates. Journal of Clinical Microbiology. 43(8): 3615-2623.

Rodrigues B.L., Santos R.L., Rizzo N.N., Tagliari Z.V., Oliveira P.A., Trenhago G., Rodegheri C.Z., Taglieti M.R., Dickel L.E. & Nascimento R.V. 2009. Avaliação da hidrofobicidade e da formação de biofilme em poliestireno por Salmonella Heidelberg isoladas de abatedouro avícola. Acta Scientiae Veterinariae. 37(3): 225-230.

Salimena S.P.A. 2014. Formação de biofilme na indústria de alimentos por estirpes de Staphylococcus aureus isoladas de mastite bovina. Revista CES. 28(1): 88-102.

Sambrook J. & Russel D.W. 2001. Molecular cloning: a laboratory manual. 3rd edn. Nova York: Cold Spring Harbor Laboratory Press, 999p.

Santos Junior A.C., Salimenta A.P., Sant’Anna C.M. & Roberta H. 2014. Action of sanitizers on Staphylococcus aureus biofilm on stainless steel and polypropylene surfaces. African Journal Microbiology Research. 36(9): 3347-3353.

Statistix®. 2003. Statistix 8 analytical software. Tallahassee: Analytical software, Florida, USA.

Stepanovic S., Vukovic D., Dakic I., Savic B. & Svabic-Vlahovic M. 2000. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal Microbiological Methods. 40(2): 175-179.

Versalovic J., Schneider M., De Bruijn F.J. & Lupski J.R. 1994. Genomic fingerprinting of bacteria with repetitive sequencebased polymerase chain reaction. Methods in Molecular and Cellular Biology. 5: 25-40.

Published

2018-01-01

How to Cite

Friedriczewski, A. B., Gandra, E. Ávila, Conceição, R. de C. dos S. da, Cereser, N. D., Moreira, L. M., & Timm, C. D. (2018). Biofilm Formation by Coagulase-Positive Staphylococcus aureus Isolated from Mozzarella Cheese Elaborated with Buffalo Milk and its Effect on Sensitivity to Sanitizers. Acta Scientiae Veterinariae, 46(1), 6. https://doi.org/10.22456/1679-9216.81813

Issue

Section

Articles

Most read articles by the same author(s)